論文の概要: Reinforcement learning for options on target volatility funds
- arxiv url: http://arxiv.org/abs/2112.01841v1
- Date: Fri, 3 Dec 2021 10:55:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-06 17:15:13.136814
- Title: Reinforcement learning for options on target volatility funds
- Title(参考訳): 目標ボラティリティファンドにおける選択肢の強化学習
- Authors: Roberto Daluiso, Emanuele Nastasi, Andrea Pallavicini, Stefano Polo
- Abstract要約: 我々は、目標ボラティリティ戦略(TVS)に基づくリスクの高い証券のヘッジによる資金調達コストの上昇に対処する。
我々はこの問題をブラック・アンド・ショールズ(BS)のシナリオで解析的に解いた。
次に、局所ボラティリティ(LV)モデルの下で最も保守的な価格につながる資金組成を決定するために強化学習(RL)技術を使用します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we deal with the funding costs rising from hedging the risky
securities underlying a target volatility strategy (TVS), a portfolio of risky
assets and a risk-free one dynamically rebalanced in order to keep the realized
volatility of the portfolio on a certain level. The uncertainty in the TVS
risky portfolio composition along with the difference in hedging costs for each
component requires to solve a control problem to evaluate the option prices. We
derive an analytical solution of the problem in the Black and Scholes (BS)
scenario. Then we use Reinforcement Learning (RL) techniques to determine the
fund composition leading to the most conservative price under the local
volatility (LV) model, for which an a priori solution is not available. We show
how the performances of the RL agents are compatible with those obtained by
applying path-wise the BS analytical strategy to the TVS dynamics, which
therefore appears competitive also in the LV scenario.
- Abstract(参考訳): この作業では、目標ボラティリティ戦略(TVS)に基づくリスクの高い証券のヘッジ、リスクのない資産のポートフォリオ、そしてポートフォリオの現実的なボラティリティを一定のレベルに保つために動的にリバランスしたリスクのない資産のポートフォリオに対処する。
テレビSリスクポートフォリオ構成の不確実性と各コンポーネントのヘッジコストの差は、オプション価格を評価するための制御問題を解く必要がある。
我々は、ブラック・アンド・ショール(bs)シナリオにおける問題の分析解を導出する。
次に、Reinforcement Learning(RL)技術を用いて、事前ソリューションが利用できない局所ボラティリティ(LV)モデルの下で、最も保守的な価格につながる資金組成を決定する。
本研究は,TVSの動的解析にパスワイズを応用したRLエージェントの性能と相性がよく,したがってLVのシナリオでも競合することを示す。
関連論文リスト
- Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can Perturbations Help Reduce Investment Risks? Risk-Aware Stock
Recommendation via Split Variational Adversarial Training [44.7991257631318]
本稿では,リスクを意識したストックレコメンデーションのための新しいSVAT法を提案する。
株式レコメンデーションモデルのボラティリティを下げることで、SVATは投資リスクを効果的に低減し、リスク調整利益の点で最先端のベースラインを30%以上上回ります。
論文 参考訳(メタデータ) (2023-04-20T12:10:12Z) - Robust Risk-Aware Option Hedging [2.405471533561618]
本稿では、経路依存型金融デリバティブに関連するリスクを軽減するために、ロバストリスク認識強化学習(RL)の可能性を示す。
この手法をバリアオプションのヘッジに適用し、エージェントがリスク回避からリスク探究へと移行するにつれて、最適なヘッジ戦略が歪曲する方法について強調する。
論文 参考訳(メタデータ) (2023-03-27T13:57:13Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
資産配分とは、ポートフォリオの資産を常に再分配することでリスクと報酬のバランスをとることを目的とした投資戦略である。
我々は、多くの最適化手法の有効性と信頼性を決定するために、広範囲なベンチマーク研究を行う。
論文 参考訳(メタデータ) (2022-07-14T14:44:04Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
エージェントの選好が不明な場合,共有資源の不足の設定における意思決定の問題について検討する。
我々のアプローチは、再生されたカーネルヒルベルト空間における好みの表現に基づいている。
エージェントの期待した利益を最大化する最適な戦略を導出する。
論文 参考訳(メタデータ) (2020-10-29T03:08:22Z) - Option Hedging with Risk Averse Reinforcement Learning [34.85783251852863]
リスク回避型強化学習がヘッジオプションにどのように使用できるかを示す。
我々は,バニラオプションヘッジ環境に最先端のリスク逆アルゴリズムを適用した。
論文 参考訳(メタデータ) (2020-10-23T09:08:24Z) - Learning Risk Preferences from Investment Portfolios Using Inverse
Optimization [25.19470942583387]
本稿では,既存ポートフォリオからのリスク嗜好を逆最適化を用いて測定する手法を提案する。
我々は、20年間の資産価格と10年間の相互ファンドポートフォリオ保有からなる実市場データについて、本手法を実証する。
論文 参考訳(メタデータ) (2020-10-04T21:29:29Z) - Time your hedge with Deep Reinforcement Learning [0.0]
深層強化学習(DRL)は、市場情報とヘッジ戦略の割り当て決定の間のダイナミックな依存関係を作成することで、この課題に対処することができる。
i)行動決定に追加の文脈情報を使用し、(ii)共通の資産運用者の1日のラグ転倒を考慮し、ヘッジの再均衡を図るための観察と行動の間に1期間の遅れがあり、(iii)アンカードウォークフォワードトレーニングと呼ばれる反復的な試験方法により、安定性とロバスト性の観点から完全にテストされており、(iv)時系列のkフォールドクロスバリデーションと同様に、ヘッジの活用を可能にする。
論文 参考訳(メタデータ) (2020-09-16T06:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。