論文の概要: Dataset Dynamics via Gradient Flows in Probability Space
- arxiv url: http://arxiv.org/abs/2010.12760v2
- Date: Wed, 16 Jun 2021 16:33:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 12:18:48.393815
- Title: Dataset Dynamics via Gradient Flows in Probability Space
- Title(参考訳): 確率空間における勾配流れによるデータセットダイナミクス
- Authors: David Alvarez-Melis and Nicol\`o Fusi
- Abstract要約: 本稿では,データ生成連立確率分布の最適化を目的とした,データセット変換のための新しいフレームワークを提案する。
このフレームワークは、分類データセットに制約を課したり、トランスファーラーニングに適応させたり、固定またはブラックボックスモデルを再使用して -- 高精度で -- 以前は見つからなかったデータセットを分類するために使用することができる。
- 参考スコア(独自算出の注目度): 15.153110906331733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various machine learning tasks, from generative modeling to domain
adaptation, revolve around the concept of dataset transformation and
manipulation. While various methods exist for transforming unlabeled datasets,
principled methods to do so for labeled (e.g., classification) datasets are
missing. In this work, we propose a novel framework for dataset transformation,
which we cast as optimization over data-generating joint probability
distributions. We approach this class of problems through Wasserstein gradient
flows in probability space, and derive practical and efficient particle-based
methods for a flexible but well-behaved class of objective functions. Through
various experiments, we show that this framework can be used to impose
constraints on classification datasets, adapt them for transfer learning, or to
re-purpose fixed or black-box models to classify -- with high accuracy --
previously unseen datasets.
- Abstract(参考訳): 生成モデリングからドメイン適応に至るまで、さまざまな機械学習タスクは、データセットの変換と操作の概念を取り巻く。
ラベルなしデータセットを変換するための様々な方法が存在するが、ラベル付きデータセット(例えば、分類)のための原則付きメソッドが欠落している。
本研究では,データ生成連関確率分布の最適化を目的とした,データセット変換のための新しいフレームワークを提案する。
確率空間におけるワッサーシュタイン勾配流を通してこの問題のクラスにアプローチし、フレキシブルだが良好な目的関数のクラスに対する実用的で効率的な粒子法を導出する。
さまざまな実験を通じて、このフレームワークは分類データセットに制約を課したり、転送学習に適応させたり、固定またはブラックボックスモデルを再目的に応用して -- 高い精度で - 正確に - 未知のデータセットを分類するために使用することができることを示す。
関連論文リスト
- Learning from Uncertain Data: From Possible Worlds to Possible Models [13.789554282826835]
本研究では,不確実性のあるデータから線形モデルを学習するための効率的な手法を提案する。
我々はこれらのデータセットの変動をコンパクトに表現し、すべての可能な世界における勾配勾配のシンボリックな実行を可能にする。
提案手法は,全ての可能な最適モデルと予測範囲を過度に近似する。
論文 参考訳(メタデータ) (2024-05-28T19:36:55Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
高次元データセットの共分散学習を容易にするために,クレーマー-ウォルド距離正規化を導入し,クレーマー-ウォルド距離正規化法を提案する。
また、フレキシブルな事前モデリングを可能にする2段階学習手法を導入し、集約後と事前分布のアライメントを改善する。
論文 参考訳(メタデータ) (2023-10-25T05:24:23Z) - Geometrically Aligned Transfer Encoder for Inductive Transfer in
Regression Tasks [5.038936775643437]
微分幾何学に基づく新しい移動法,すなわち幾何学的配向変換(GATE)を提案する。
すべての任意の点が重なり合う領域の局所平坦な座標に写像されることを保証するために、タスクのペア間の適切な微分同相性を見つけ、ソースからターゲットデータへの知識の伝達を可能にする。
GATEは従来の手法より優れ、様々な分子グラフデータセットの潜伏空間と外挿領域の両方で安定した振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-10T07:11:25Z) - Binary Quantification and Dataset Shift: An Experimental Investigation [54.14283123210872]
量子化は教師付き学習タスクであり、未学習データの集合のクラス有病率の予測器を訓練する。
定量化と他のタイプのデータセットシフトの関係は、いまだ大きく、未調査のままである。
本稿では,これらのシフトに影響を受けるデータセットの生成プロトコルを確立することにより,データセットシフトの種類を詳細に分類する手法を提案する。
論文 参考訳(メタデータ) (2023-10-06T20:11:27Z) - Flow Factorized Representation Learning [109.51947536586677]
本稿では、異なる入力変換を定義する潜在確率パスの別個のセットを規定する生成モデルを提案する。
本モデルは,ほぼ同変モデルに近づきながら,標準表現学習ベンチマークにおいて高い確率を達成することを示す。
論文 参考訳(メタデータ) (2023-09-22T20:15:37Z) - A Data-Driven Method for Automated Data Superposition with Applications
in Soft Matter Science [0.0]
我々は任意の座標変換で実験データを重畳するデータ駆動非パラメトリック法を開発した。
本手法は, 材料分類, 設計, 発見などの応用を通知する, 解釈可能なデータ駆動モデルを生成する。
論文 参考訳(メタデータ) (2022-04-20T14:58:04Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
トレーニングデータのサブセットのみをラベル付けするバッチアクティブな学習問題を考察する。
制約付き最適化を用いて学習問題を定式化し、各制約はラベル付きサンプルにモデルの性能を拘束する。
数値実験により,提案手法は最先端の能動学習法と同等かそれ以上に機能することを示した。
論文 参考訳(メタデータ) (2022-02-08T19:18:49Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Heterogeneous Transfer Learning in Ensemble Clustering [0.0]
類似したラベル付きデータが利用できるクラスタリング問題を考える。
本手法は,データの構造的特徴を記述したメタ機能の構築に基づく。
モンテカルロモデルを用いた実験により,その効率性が確認された。
論文 参考訳(メタデータ) (2020-01-20T16:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。