論文の概要: Joint Distributional Learning via Cramer-Wold Distance
- arxiv url: http://arxiv.org/abs/2310.16374v1
- Date: Wed, 25 Oct 2023 05:24:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 16:38:28.008603
- Title: Joint Distributional Learning via Cramer-Wold Distance
- Title(参考訳): cramer-wold distance による関節分布学習
- Authors: Seunghwan An and Jong-June Jeon
- Abstract要約: 高次元データセットの共分散学習を容易にするために,クレーマー-ウォルド距離正規化を導入し,クレーマー-ウォルド距離正規化法を提案する。
また、フレキシブルな事前モデリングを可能にする2段階学習手法を導入し、集約後と事前分布のアライメントを改善する。
- 参考スコア(独自算出の注目度): 0.7614628596146602
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The assumption of conditional independence among observed variables,
primarily used in the Variational Autoencoder (VAE) decoder modeling, has
limitations when dealing with high-dimensional datasets or complex correlation
structures among observed variables. To address this issue, we introduced the
Cramer-Wold distance regularization, which can be computed in a closed-form, to
facilitate joint distributional learning for high-dimensional datasets.
Additionally, we introduced a two-step learning method to enable flexible prior
modeling and improve the alignment between the aggregated posterior and the
prior distribution. Furthermore, we provide theoretical distinctions from
existing methods within this category. To evaluate the synthetic data
generation performance of our proposed approach, we conducted experiments on
high-dimensional datasets with multiple categorical variables. Given that many
readily available datasets and data science applications involve such datasets,
our experiments demonstrate the effectiveness of our proposed methodology.
- Abstract(参考訳): 変分オートエンコーダ(vae)デコーダモデリングで主に使用される観測変数間の条件付き独立性の仮定は、観測変数間の高次元データセットや複素相関構造を扱う場合に制限がある。
この問題に対処するために,閉形式で計算可能なクラーウォルド距離正規化を導入し,高次元データセットの協調分布学習を容易にする。
さらに、フレキシブルな事前モデリングを可能にする2段階学習法を導入し、集約後と事前分布のアライメントを改善した。
さらに,本カテゴリ内の既存手法と理論的に区別する。
提案手法の合成データ生成性能を評価するために,複数のカテゴリ変数を持つ高次元データセットの実験を行った。
利用可能なデータセットやデータサイエンスアプリケーションの多くがこのようなデータセットを含んでいることを考慮し,提案手法の有効性を実証する。
関連論文リスト
- Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets [11.105392318582677]
本稿では,理論的保証付きデータセットの整列と共同埋め込みの原理的アプローチを提案する。
提案手法は,2つのデータセット間のEOT計画行列の先頭特異ベクトルを利用して,それらの共通基盤構造を抽出する。
EOT計画では,高次元状態において,潜伏変数の位置で評価されたカーネル関数を近似することにより,共有多様体構造を復元する。
論文 参考訳(メタデータ) (2024-07-01T18:48:55Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Scalable Regularised Joint Mixture Models [2.0686407686198263]
多くの応用において、データは異なる基底分布を持つ潜在群にまたがるという意味で不均一である。
我々は,(i)明示的多変量特徴分布,(ii)高次元回帰モデル,(iii)潜在群ラベルの連成学習を可能にする異種データに対するアプローチを提案する。
このアプローチは明らかに高次元において有効であり、計算効率のためのデータ削減と、特徴数が大きければ鍵信号を保持する再重み付けスキームを組み合わせる。
論文 参考訳(メタデータ) (2022-05-03T13:38:58Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - Latent Space Model for Higher-order Networks and Generalized Tensor
Decomposition [18.07071669486882]
我々は、複雑な高次ネットワーク相互作用を研究するために、一般的な潜在空間モデルとして定式化された統一フレームワークを導入する。
一般化された多線形カーネルをリンク関数として、潜伏位置と観測データとの関係を定式化する。
本手法が合成データに与える影響を実証する。
論文 参考訳(メタデータ) (2021-06-30T13:11:17Z) - Hierarchical regularization networks for sparsification based learning
on noisy datasets [0.0]
階層は、連続的により微細なスケールで特定される近似空間から従う。
各スケールでのモデル一般化を促進するため,複数次元にわたる新規な射影型ペナルティ演算子も導入する。
その結果、合成データセットと実データセットの両方において、データ削減およびモデリング戦略としてのアプローチの性能が示された。
論文 参考訳(メタデータ) (2020-06-09T18:32:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。