論文の概要: Abduction and Argumentation for Explainable Machine Learning: A Position
Survey
- arxiv url: http://arxiv.org/abs/2010.12896v1
- Date: Sat, 24 Oct 2020 13:23:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 12:25:34.708021
- Title: Abduction and Argumentation for Explainable Machine Learning: A Position
Survey
- Title(参考訳): 説明可能な機械学習のためのアブダクションと議論:位置調査
- Authors: Antonis Kakas, Loizos Michael
- Abstract要約: 本稿では, 推論の2つの原則形式として, 帰納法と論証法を提案する。
機械学習の中で彼らが果たせる基本的な役割を具体化します。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents Abduction and Argumentation as two principled forms for
reasoning, and fleshes out the fundamental role that they can play within
Machine Learning. It reviews the state-of-the-art work over the past few
decades on the link of these two reasoning forms with machine learning work,
and from this it elaborates on how the explanation-generating role of Abduction
and Argumentation makes them naturally-fitting mechanisms for the development
of Explainable Machine Learning and AI systems. Abduction contributes towards
this goal by facilitating learning through the transformation, preparation, and
homogenization of data. Argumentation, as a conservative extension of classical
deductive reasoning, offers a flexible prediction and coverage mechanism for
learning -- an associated target language for learned knowledge -- that
explicitly acknowledges the need to deal, in the context of learning, with
uncertain, incomplete and inconsistent data that are incompatible with any
classically-represented logical theory.
- Abstract(参考訳): 本稿では、推論の2つの原則形式としてアブダクションとArgumentationを提示し、機械学習における基本的役割を解明する。
これまでの数十年間、この2つの推論フォームと機械学習の作業の関連について、最先端の成果をレビューし、そこから、推論と議論という説明生成の役割がどのようにして、説明可能な機械学習とAIシステムの開発に自然に適合するメカニズムをもたらすかを詳述した。
アブダクションはデータの変換、準備、均質化を通じて学習を促進することでこの目標に寄与する。
議論は古典的推論の保守的な拡張として、学習のための柔軟な予測とカバレッジのメカニズムを提供する。これは学習の文脈において、古典的に表現された論理理論と互換性のない不完全で一貫性のないデータで対処する必要性を明確に認識する。
関連論文リスト
- Reasoning with Natural Language Explanations [15.281385727331473]
説明は人間の合理性の根幹をなす特徴であり、学習と一般化を支えている。
自然言語推論(NLI)の研究は、学習や推論において説明が果たす役割を再考し始めている。
論文 参考訳(メタデータ) (2024-10-05T13:15:24Z) - Beyond Model Interpretability: Socio-Structural Explanations in Machine Learning [5.159407277301709]
我々は、機械学習のアウトプットを規範的に健全な領域で解釈するには、第3のタイプの説明に訴える必要があると論じている。
この説明型の関連性は、機械学習モデルが独立した実体ではなく、社会構造に埋め込まれて形成されているという事実によって動機付けられている。
論文 参考訳(メタデータ) (2024-09-05T15:47:04Z) - A Mechanistic Interpretation of Syllogistic Reasoning in Auto-Regressive Language Models [13.59675117792588]
自己回帰言語モデル(LM)における論理的推論に関する最近の研究は、そのようなモデルが事前学習中に体系的推論原理を学習できるかという議論を引き起こしている。
本稿では, 内部力学の理解を深めるため, LMにおけるシロメトリクス推論の機械論的解釈を提案する。
論文 参考訳(メタデータ) (2024-08-16T07:47:39Z) - On the Relationship Between Interpretability and Explainability in Machine Learning [2.828173677501078]
解釈可能性と説明可能性は、機械学習の分野でますます注目を集めている。
両者は予測者とその決定プロセスに関する情報を提供するため、単一のエンドに対して2つの独立した手段と見なされることが多い。
複雑なブラックボックスモデル用に設計された説明可能性技術、あるいは多くの説明可能性ツールを無視した解釈可能なアプローチ。
論文 参考訳(メタデータ) (2023-11-20T02:31:08Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Scientific Explanation and Natural Language: A Unified
Epistemological-Linguistic Perspective for Explainable AI [2.7920304852537536]
本稿では,理論と実践のギャップを科学的説明の概念に埋めることを目的として,科学的領域に焦点を当てた。
定量的および定性的手法の混合により、本研究では以下の主要な結論を導出することができる。
論文 参考訳(メタデータ) (2022-05-03T22:31:42Z) - Rethinking Explainability as a Dialogue: A Practitioner's Perspective [57.87089539718344]
医師、医療専門家、政策立案者に対して、説明を求めるニーズと欲求について尋ねる。
本研究は, 自然言語対話の形での対話的説明を, 意思決定者が強く好むことを示唆する。
これらのニーズを考慮して、インタラクティブな説明を設計する際に、研究者が従うべき5つの原則を概説する。
論文 参考訳(メタデータ) (2022-02-03T22:17:21Z) - Fact-driven Logical Reasoning for Machine Reading Comprehension [82.58857437343974]
私たちは、常識と一時的な知識のヒントの両方を階層的にカバーする動機があります。
具体的には,文の背骨成分を抽出し,知識単位の一般的な定式化を提案する。
次に、事実単位の上にスーパーグラフを構築し、文レベル(事実群間の関係)と実体レベルの相互作用の利点を享受する。
論文 参考訳(メタデータ) (2021-05-21T13:11:13Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
大規模な事前学習言語モデル(LM)は推論能力を得るが、制御は困難である。
本研究では,暗黙的,事前学習された知識と明示的な自然言語文を併用して,体系的推論を確実に行うことができることを示す。
我々の研究は、シンプルな自然言語文を追加することで、モデルを簡単に修正できるユーザと対話することで、常に改善されるオープンドメインシステムへの道を開く。
論文 参考訳(メタデータ) (2020-06-11T17:02:20Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。