論文の概要: A Mechanistic Interpretation of Syllogistic Reasoning in Auto-Regressive Language Models
- arxiv url: http://arxiv.org/abs/2408.08590v1
- Date: Fri, 16 Aug 2024 07:47:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:17:46.681746
- Title: A Mechanistic Interpretation of Syllogistic Reasoning in Auto-Regressive Language Models
- Title(参考訳): 自己回帰型言語モデルにおけるソロジカル推論の機械論的解釈
- Authors: Geonhee Kim, Marco Valentino, André Freitas,
- Abstract要約: 自己回帰言語モデル(LM)における論理的推論に関する最近の研究は、そのようなモデルが事前学習中に体系的推論原理を学習できるかという議論を引き起こしている。
本稿では, 内部力学の理解を深めるため, LMにおけるシロメトリクス推論の機械論的解釈を提案する。
- 参考スコア(独自算出の注目度): 13.59675117792588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies on logical reasoning in auto-regressive Language Models (LMs) have sparked a debate on whether such models can learn systematic reasoning principles during pre-training or merely exploit superficial patterns in the training data. This paper presents a mechanistic interpretation of syllogistic reasoning in LMs to further enhance our understanding of internal dynamics. Specifically, we present a methodology for circuit discovery aimed at disentangling content-independent reasoning mechanisms from world knowledge acquired during pre-training. Through two distinct intervention methods, we uncover a sufficient and necessary circuit involving middle-term suppression that elucidates how LMs transfer information to derive valid conclusions from premises. Furthermore, we investigate how belief biases manifest in syllogistic reasoning, finding evidence of partial contamination from additional attention heads responsible for encoding commonsense and contextualized knowledge. Finally, we explore the generalization of the discovered mechanisms across various syllogistic schemes and model sizes, finding that the identified circuit is sufficient and necessary for all the schemes on which the model achieves high downstream accuracy ($\geq$ 60\%). Overall, our findings suggest that LMs indeed learn transferable content-independent reasoning mechanisms, but that, at the same time, such mechanisms do not involve generalisable and abstract logical primitives, being susceptible to contamination by the same world knowledge acquired during pre-training.
- Abstract(参考訳): 自己回帰言語モデル(LM)における論理的推論に関する最近の研究は、そのようなモデルが事前学習中に体系的推論原理を学習できるか、あるいは単にトレーニングデータにおける表面的パターンを活用できるかという議論を引き起こしている。
本稿では, 内部力学の理解を深めるため, LMにおけるシロメトリクス推論の機械論的解釈を提案する。
具体的には、事前学習中に得られた世界知識から、コンテンツに依存しない推論メカニズムを遠ざけることを目的とした回路発見手法を提案する。
2つの異なる介入手法により、LMが情報をどのように伝達し、前提から妥当な結論を導出するかを解明する、中期的抑制を伴う十分かつ必要な回路を明らかにする。
さらに,シロメトリクス的推論において信念バイアスがどのように現れるのかを考察し,コモンセンスや文脈的知識の符号化に寄与する追加の注意頭から部分的な汚染の証拠を見出した。
最後に、同定されたメカニズムを様々なシロメクススキームとモデルサイズにまたがって一般化し、同定された回路は、モデルが下流の精度を高い精度で達成するすべてのスキームに十分かつ必要であることを示す($60 %)。
総じて, LMは, 伝達可能な内容非依存の推論機構を学習するが, 同時に, それらのメカニズムは一般的かつ抽象的な論理的プリミティブを伴わず, 事前学習中に獲得した同じ世界知識によって汚染される可能性が示唆された。
関連論文リスト
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Mechanistic Unveiling of Transformer Circuits: Self-Influence as a Key to Model Reasoning [9.795934690403374]
このような課題を解決するために言語モデルでどのような多段階推論機構が使われているのかはいまだ不明である。
回路解析と自己影響関数を用いて、推論過程を通して各トークンの変動の重要性を評価する。
提案手法は,モデルが使用する人間の解釈可能な推論過程を明らかにする。
論文 参考訳(メタデータ) (2025-02-13T07:19:05Z) - A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences [5.141416267381492]
我々は、論理学と認知心理学において広範囲に研究されている誘因的推論の領域であるシロメトリクス推論の事例を考察する。
思考の連鎖的推論,文脈内学習,教師付き微調整がシロメトリクス的推論に及ぼす影響について検討した。
以上の結果から,事前学習したLSMの行動は認知科学によって説明できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-17T08:59:04Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Causal Abstraction: A Theoretical Foundation for Mechanistic Interpretability [30.76910454663951]
因果抽象化は機械的解釈可能性の理論的基盤を提供する。
我々の貢献は、メカニズム置換から任意のメカニズム変換への因果的抽象化の理論の一般化である。
論文 参考訳(メタデータ) (2023-01-11T20:42:41Z) - Abduction and Argumentation for Explainable Machine Learning: A Position
Survey [2.28438857884398]
本稿では, 推論の2つの原則形式として, 帰納法と論証法を提案する。
機械学習の中で彼らが果たせる基本的な役割を具体化します。
論文 参考訳(メタデータ) (2020-10-24T13:23:44Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
大規模な事前学習言語モデル(LM)は推論能力を得るが、制御は困難である。
本研究では,暗黙的,事前学習された知識と明示的な自然言語文を併用して,体系的推論を確実に行うことができることを示す。
我々の研究は、シンプルな自然言語文を追加することで、モデルを簡単に修正できるユーザと対話することで、常に改善されるオープンドメインシステムへの道を開く。
論文 参考訳(メタデータ) (2020-06-11T17:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。