論文の概要: CLRGaze: Contrastive Learning of Representations for Eye Movement
Signals
- arxiv url: http://arxiv.org/abs/2010.13046v2
- Date: Sun, 30 May 2021 14:14:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 04:49:51.432214
- Title: CLRGaze: Contrastive Learning of Representations for Eye Movement
Signals
- Title(参考訳): CLRGaze:眼球運動信号の表現の対照的な学習
- Authors: Louise Gillian C. Bautista and Prospero C. Naval Jr
- Abstract要約: 眼球運動の特徴ベクトルを自己指導的に学習する。
我々は、対照的な学習アプローチを採用し、深層ニューラルネットワークが顕著な視線パターンと粒度のパターンを識別することを奨励する一連のデータ変換を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eye movements are intricate and dynamic biosignals that contain a wealth of
cognitive information about the subject. However, these are ambiguous signals
and therefore require meticulous feature engineering to be used by machine
learning algorithms. We instead propose to learn feature vectors of eye
movements in a self-supervised manner. We adopt a contrastive learning approach
and propose a set of data transformations that encourage a deep neural network
to discern salient and granular gaze patterns. This paper presents a novel
experiment utilizing six eye-tracking data sets despite different data
specifications and experimental conditions. We assess the learned features on
biometric tasks with only a linear classifier, achieving 84.6% accuracy on a
mixed dataset, and up to 97.3% accuracy on a single dataset. Our work advances
the state of machine learning for eye movements and provides insights into a
general representation learning method not only for eye movements but also for
similar biosignals.
- Abstract(参考訳): 眼球運動は、被検体に関する豊富な認知情報を含む複雑な動的生体信号である。
しかし、これらはあいまいな信号であり、従って機械学習アルゴリズムで使用されるには精巧な特徴工学が必要である。
そこで我々は,眼球運動の特徴ベクトルを自己指導的に学習することを提案する。
我々は、対照的な学習アプローチを採用し、深層ニューラルネットワークが顕著な視線パターンと粒度のパターンを識別することを奨励する一連のデータ変換を提案する。
本稿では,データ仕様や実験条件の異なる6つのアイトラッキングデータセットを用いた新しい実験について述べる。
線形分類器のみを用いて生体計測タスクの学習特性を評価し,混合データセットでは84.6%,単一データセットでは97.3%の精度を得た。
本研究は、眼球運動のための機械学習の現状を進展させ、眼球運動だけでなく、類似の生体信号に対しても一般的な表現学習法に関する洞察を提供する。
関連論文リスト
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
照明やシーンテクスチャの微妙な変化の下では,操作や制御作業のために設計された視覚表現が必ずしも一般化されないことがわかった。
創発的セグメンテーション能力は,ViTモデルにおける分布外一般化の強い予測因子であることがわかった。
論文 参考訳(メタデータ) (2023-11-03T18:09:08Z) - URLOST: Unsupervised Representation Learning without Stationarity or
Topology [26.17135629579595]
定常性やトポロジに欠ける高次元データから学習する新しいフレームワークを提案する。
我々のモデルは学習可能な自己組織化層、密度調整されたスペクトルクラスタリング、マスク付きオートエンコーダを組み合わせる。
本研究は,生体視覚データ,一次視覚野からの神経記録,遺伝子発現データセットにおいて有効性を評価する。
論文 参考訳(メタデータ) (2023-10-06T18:00:02Z) - Factors of Influence for Transfer Learning across Diverse Appearance
Domains and Task Types [50.1843146606122]
現在の最新のコンピュータビジョンモデルでは、簡単な転送学習が一般的です。
転校学習に関するこれまでの体系的な研究は限られており、作業が期待される状況は十分に理解されていない。
本論文では,非常に異なる画像領域にまたがる転送学習の広範な実験的研究を行う。
論文 参考訳(メタデータ) (2021-03-24T16:24:20Z) - Dynamic Graph Modeling of Simultaneous EEG and Eye-tracking Data for
Reading Task Identification [79.41619843969347]
我々は、脳波(EEG)と眼球運動(EM)データからヒトの読取意図を特定するための新しいアプローチAdaGTCNを提案する。
本稿では,AdaGTCN(Adaptive Graph Temporal Convolution Network)の手法として,Adaptive Graph Learning LayerとDeep Neighborhood Graph Convolution Layerを用いた。
このアプローチといくつかのベースラインを比較し、ZuCo 2.0データセットの6.29%の改善と広範なアブレーション実験を報告します。
論文 参考訳(メタデータ) (2021-02-21T18:19:49Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
本研究では,ホメオモルフィズムがマルウェアのトラフィックデータセットの学習表現に与える影響について検討する。
この結果から,学習された表現の詳細と,すべてのパラメータの多様体上で定義された特定の座標系は,関数近似とは全く異なることが示唆された。
論文 参考訳(メタデータ) (2020-09-16T15:37:44Z) - GazeMAE: General Representations of Eye Movements using a Micro-Macro
Autoencoder [0.0]
本研究では,視線行動における重要なニュアンスを刺激非依存に保った眼球運動の抽象表現を提案する。
眼球運動を生の位置と速度の信号とみなし、深部側頭葉畳み込みオートエンコーダを訓練する。
オートエンコーダは、目の動きの速い特徴と遅い特徴に対応するマイクロスケールとマクロスケールの表現を学習する。
論文 参考訳(メタデータ) (2020-09-05T02:13:42Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - TactileSGNet: A Spiking Graph Neural Network for Event-based Tactile
Object Recognition [17.37142241982902]
フレキシブルでイベント駆動の電子スキンの新しい進歩は、すぐに人間に似たタッチ認識能力を持つロボットを養うかもしれない。
これらのユニークな特徴は、触覚学習には適さない畳み込み特徴抽出器のような、現在のディープラーニングアプローチをもたらす可能性がある。
イベントベース触覚物体認識のための新しいスパイキンググラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-01T03:35:15Z) - MLGaze: Machine Learning-Based Analysis of Gaze Error Patterns in
Consumer Eye Tracking Systems [0.0]
本研究では,市販眼球追跡装置が生成する視線誤差パターンを機械学習アルゴリズムを用いて検討した。
異なる誤差源が視線データ特性に与える影響は、視線検査やデータ統計によってほとんど区別できないが、機械学習モデルは、異なる誤差源の影響を特定し、これらの条件による視線エラーレベルの変動を予測することに成功している。
論文 参考訳(メタデータ) (2020-05-07T23:07:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。