Context Aware 3D UNet for Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2010.13082v2
- Date: Fri, 27 Nov 2020 13:57:26 GMT
- Title: Context Aware 3D UNet for Brain Tumor Segmentation
- Authors: Parvez Ahmad, Saqib Qamar, Linlin Shen, Adnan Saeed
- Abstract summary: UNet is the primary source in the performance of 3D CNN architectures for medical imaging tasks.
We propose a modified UNet architecture for brain tumor segmentation.
- Score: 24.27997192961372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep convolutional neural network (CNN) achieves remarkable performance for
medical image analysis. UNet is the primary source in the performance of 3D CNN
architectures for medical imaging tasks, including brain tumor segmentation.
The skip connection in the UNet architecture concatenates features from both
encoder and decoder paths to extract multi-contextual information from image
data. The multi-scaled features play an essential role in brain tumor
segmentation. However, the limited use of features can degrade the performance
of the UNet approach for segmentation. In this paper, we propose a modified
UNet architecture for brain tumor segmentation. In the proposed architecture,
we used densely connected blocks in both encoder and decoder paths to extract
multi-contextual information from the concept of feature reusability. In
addition, residual-inception blocks (RIB) are used to extract the local and
global information by merging features of different kernel sizes. We validate
the proposed architecture on the multi-modal brain tumor segmentation challenge
(BRATS) 2020 testing dataset. The dice (DSC) scores of the whole tumor (WT),
tumor core (TC), and enhancing tumor (ET) are 89.12%, 84.74%, and 79.12%,
respectively.
Related papers
- MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
This study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net framework, which integrates multibranch residual blocks and fused attention into the model.
The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images.
arXiv Detail & Related papers (2024-11-04T09:03:43Z) - multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information [1.7359724605901228]
Brain Tumor distances (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors.
Due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task.
We propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy.
arXiv Detail & Related papers (2024-09-18T17:35:19Z) - Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients.
Various deep learning-based techniques have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology.
We propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation.
arXiv Detail & Related papers (2024-05-22T02:46:26Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation [17.756591105686]
This paper proposes hyperdense inception 3D UNet (HI-Net), which captures multi-scale information by stacking factorization of 3D weighted convolutional layers in the residual inception block.
Preliminary results on the BRATS 2020 testing set show that achieved by our proposed approach, the dice (DSC) scores of ET, WT, and TC are 0.79457, 0.87494, and 0.83712, respectively.
arXiv Detail & Related papers (2020-12-12T09:09:04Z) - Neural Architecture Search for Gliomas Segmentation on Multimodal
Magnetic Resonance Imaging [2.66512000865131]
We propose a neural architecture search (NAS) based solution to brain tumor segmentation tasks on multimodal MRI scans.
The developed solution also integrates normalization and patching strategies tailored for brain MRI processing.
arXiv Detail & Related papers (2020-05-13T14:32:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.