Neural Architecture Search for Gliomas Segmentation on Multimodal
Magnetic Resonance Imaging
- URL: http://arxiv.org/abs/2005.06338v2
- Date: Wed, 20 May 2020 06:00:43 GMT
- Title: Neural Architecture Search for Gliomas Segmentation on Multimodal
Magnetic Resonance Imaging
- Authors: Feifan Wang
- Abstract summary: We propose a neural architecture search (NAS) based solution to brain tumor segmentation tasks on multimodal MRI scans.
The developed solution also integrates normalization and patching strategies tailored for brain MRI processing.
- Score: 2.66512000865131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Past few years have witnessed the artificial intelligence inspired evolution
in various medical fields. The diagnosis and treatment of gliomas -- one of the
most commonly seen brain tumors with low survival rate -- rely heavily on the
computer assisted segmentation process undertaken on the magnetic resonance
imaging (MRI) scans. Although the encoder-decoder shaped deep learning networks
have been the de facto standard style for semantic segmentation tasks in
medical imaging analysis, enormous effort is still required to be spent on
designing the detailed architecture of the down-sampling and up-sampling
blocks. In this work, we propose a neural architecture search (NAS) based
solution to brain tumor segmentation tasks on multimodal volumetric MRI scans.
Three sets of candidate operations are composed respectively for three kinds of
basic building blocks in which each operation is assigned with a specific
probabilistic parameter to be learned. Through alternately updating the weights
of operations and the other parameters in the network, the searching mechanism
ends up with two optimal structures for the upward and downward blocks.
Moreover, the developed solution also integrates normalization and patching
strategies tailored for brain MRI processing. Extensive comparative experiments
on the BraTS 2019 dataset demonstrate that the proposed algorithm not only
could relieve the pressure of fabricating block architectures but also
possesses competitive feasibility and scalability.
Related papers
- An Ensemble Approach for Brain Tumor Segmentation and Synthesis [0.12777007405746044]
The integration of machine learning in magnetic resonance imaging (MRI) is proving to be incredibly effective.
Deep learning models utilize multiple layers of processing to capture intricate details of complex data.
We propose a deep learning framework that ensembles state-of-the-art architectures to achieve accurate segmentation.
arXiv Detail & Related papers (2024-11-26T17:28:51Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Exploration of Multi-Scale Image Fusion Systems in Intelligent Medical Image Analysis [3.881664394416534]
It is necessary to perform automatic segmentation of brain tumors on MRI images.
This project intends to build an MRI algorithm based on U-Net.
arXiv Detail & Related papers (2024-05-23T04:33:12Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - 3D Brainformer: 3D Fusion Transformer for Brain Tumor Segmentation [6.127298607534532]
Deep learning has recently emerged to improve brain tumor segmentation.
Transformers have been leveraged to address the limitations of convolutional networks.
We propose a 3D Transformer-based segmentation approach.
arXiv Detail & Related papers (2023-04-28T02:11:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Context Aware 3D UNet for Brain Tumor Segmentation [24.27997192961372]
UNet is the primary source in the performance of 3D CNN architectures for medical imaging tasks.
We propose a modified UNet architecture for brain tumor segmentation.
arXiv Detail & Related papers (2020-10-25T10:32:25Z) - Transfer Learning for Brain Tumor Segmentation [0.6408773096179187]
Gliomas are the most common malignant brain tumors that are treated with chemoradiotherapy and surgery.
Recent advances in deep learning have led to convolutional neural network architectures that excel at various visual recognition tasks.
In this work, we construct FCNs with pretrained convolutional encoders. We show that we can stabilize the training process this way and achieve an improvement with respect to dice scores and Hausdorff distances.
arXiv Detail & Related papers (2019-12-28T12:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.