Discriminatively Constrained Semi-supervised Multi-view Nonnegative
Matrix Factorization with Graph Regularization
- URL: http://arxiv.org/abs/2010.13297v1
- Date: Mon, 26 Oct 2020 02:58:11 GMT
- Title: Discriminatively Constrained Semi-supervised Multi-view Nonnegative
Matrix Factorization with Graph Regularization
- Authors: Guosheng Cui, Ruxin Wang, Dan Wu, and Ye Li
- Abstract summary: We propose a novel Discriminatively Constrained Semi-Supervised Multi-View Nonnegative Matrix Factorization (DCS2MVNMF)
Specifically, a discriminative weighting matrix is introduced for the auxiliary matrix of each view, which enhances the inter-class distinction.
In addition, we design a new feature scale normalization strategy to align the multiple views and complete the corresponding iterative optimization schemes.
- Score: 10.978930376656423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, semi-supervised multi-view nonnegative matrix factorization
(MVNMF) algorithms have achieved promising performances for multi-view
clustering. While most of semi-supervised MVNMFs have failed to effectively
consider discriminative information among clusters and feature alignment from
multiple views simultaneously. In this paper, a novel Discriminatively
Constrained Semi-Supervised Multi-View Nonnegative Matrix Factorization
(DCS^2MVNMF) is proposed. Specifically, a discriminative weighting matrix is
introduced for the auxiliary matrix of each view, which enhances the
inter-class distinction. Meanwhile, a new graph regularization is constructed
with the label and geometrical information. In addition, we design a new
feature scale normalization strategy to align the multiple views and complete
the corresponding iterative optimization schemes. Extensive experiments
conducted on several real world multi-view datasets have demonstrated the
effectiveness of the proposed method.
Related papers
- Enhanced Latent Multi-view Subspace Clustering [25.343388834470247]
We propose an Enhanced Latent Multi-view Subspace Clustering (ELMSC) method for recovering latent space representation.
Our proposed ELMSC is able to achieve higher clustering performance than some state-of-art multi-view clustering methods.
arXiv Detail & Related papers (2023-12-22T15:28:55Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
We propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and $k$-means into a unified framework.
We develop an efficient optimization algorithm with proven convergence to solve the resultant problem.
arXiv Detail & Related papers (2023-06-08T02:52:24Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Multi-view Clustering via Deep Matrix Factorization and Partition
Alignment [43.56334737599984]
We propose a novel multi-view clustering algorithm via deep matrix decomposition and partition alignment.
An alternating optimization algorithm is developed to solve the optimization problem with proven convergence.
arXiv Detail & Related papers (2021-05-01T15:06:57Z) - Multi-view Clustering with Deep Matrix Factorization and Global Graph
Refinement [37.34296330445708]
Multi-view clustering is an important yet challenging task in machine learning and data mining.
We propose a novel Multi-View Clustering method with Deep semi-NMF and Global Graph Refinement (MVC-DMF-GGR) in this paper.
arXiv Detail & Related papers (2021-05-01T13:40:20Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.