One-step Multi-view Clustering with Diverse Representation
- URL: http://arxiv.org/abs/2306.05437v2
- Date: Tue, 27 Jun 2023 13:52:15 GMT
- Title: One-step Multi-view Clustering with Diverse Representation
- Authors: Xinhang Wan, Jiyuan Liu, Xinwang Liu, Siwei Wang, Yi Wen, Tianjiao
Wan, Li Shen, En Zhu
- Abstract summary: We propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and $k$-means into a unified framework.
We develop an efficient optimization algorithm with proven convergence to solve the resultant problem.
- Score: 47.41455937479201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view clustering has attracted broad attention due to its capacity to
utilize consistent and complementary information among views. Although
tremendous progress has been made recently, most existing methods undergo high
complexity, preventing them from being applied to large-scale tasks. Multi-view
clustering via matrix factorization is a representative to address this issue.
However, most of them map the data matrices into a fixed dimension, limiting
the model's expressiveness. Moreover, a range of methods suffers from a
two-step process, i.e., multimodal learning and the subsequent $k$-means,
inevitably causing a sub-optimal clustering result. In light of this, we
propose a one-step multi-view clustering with diverse representation method,
which incorporates multi-view learning and $k$-means into a unified framework.
Specifically, we first project original data matrices into various latent
spaces to attain comprehensive information and auto-weight them in a
self-supervised manner. Then we directly use the information matrices under
diverse dimensions to obtain consensus discrete clustering labels. The unified
work of representation learning and clustering boosts the quality of the final
results. Furthermore, we develop an efficient optimization algorithm with
proven convergence to solve the resultant problem. Comprehensive experiments on
various datasets demonstrate the promising clustering performance of our
proposed method.
Related papers
- Interpretable Multi-View Clustering [8.221659822719817]
In this paper, we introduce an interpretable multi-view clustering framework.
Experimental results on real datasets demonstrate that our method delivers performance comparable to state-of-the-art clustering methods.
arXiv Detail & Related papers (2024-05-04T11:56:24Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
We propose a novel multi-view clustering model, named Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)
The main objective of our approach is to enhance the clustering performance by leveraging co-training in two distinct spaces.
Our algorithm has an approximate linear computational complexity, which guarantees its successful application on large-scale datasets.
arXiv Detail & Related papers (2024-01-28T16:30:13Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint.
Firstly, we develop a simple and reliable multi-view clustering method SCMVC that employs variational analysis to generate consistent information.
Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views.
arXiv Detail & Related papers (2023-09-25T09:41:11Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Multi-view Clustering via Deep Matrix Factorization and Partition
Alignment [43.56334737599984]
We propose a novel multi-view clustering algorithm via deep matrix decomposition and partition alignment.
An alternating optimization algorithm is developed to solve the optimization problem with proven convergence.
arXiv Detail & Related papers (2021-05-01T15:06:57Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.