論文の概要: The estimation of training accuracy for two-layer neural networks on
random datasets without training
- arxiv url: http://arxiv.org/abs/2010.13380v1
- Date: Mon, 26 Oct 2020 07:21:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 18:31:07.627685
- Title: The estimation of training accuracy for two-layer neural networks on
random datasets without training
- Title(参考訳): ランダムデータセットにおける2層ニューラルネットワークのトレーニング精度の推定
- Authors: Shuyue Guan, Murray Loew
- Abstract要約: 本研究では,空間分割に基づく新しい理論を提案し,ランダムデータセット上の2層ニューラルネットワークのトレーニング精度をトレーニングなしで推定する。
提案手法は,3つの引数のみを用いて,2種類のランダムデータセット上での2層完全連結ニューラルネットワークのトレーニング精度を推定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the neural network (NN) technique plays an important role in machine
learning, understanding the mechanism of NN models and the transparency of deep
learning still require more basic research. In this study we propose a novel
theory based on space partitioning to estimate the approximate training
accuracy for two-layer neural networks on random datasets without training.
There appear to be no other studies that have proposed a method to estimate
training accuracy without using input data or trained models. Our method
estimates the training accuracy for two-layer fully-connected neural networks
on two-class random datasets using only three arguments: the dimensionality of
inputs (d), the number of inputs (N), and the number of neurons in the hidden
layer (L). We have verified our method using real training accuracies in our
experiments. The results indicate that the method will work for any dimension,
and the proposed theory could extend also to estimate deeper NN models. This
study may provide a starting point for a new way for researchers to make
progress on the difficult problem of understanding deep learning.
- Abstract(参考訳): ニューラルネットワーク(NN)技術は機械学習において重要な役割を果たすが、NNモデルのメカニズムとディープラーニングの透明性を理解するには、より基本的な研究が必要である。
本研究では,空間分割に基づく新しい理論を提案し,ランダムデータセット上の2層ニューラルネットワークのトレーニング精度をトレーニングなしで推定する。
入力データやトレーニングモデルを用いずにトレーニング精度を推定する方法を提唱した研究は他にないようである。
本手法は,入力の次元性(d),入力数(N),隠蔽層(L)内のニューロン数(L)の3つの引数のみを用いて,2層完全連結ニューラルネットワークのトレーニング精度を推定する。
実験では,実際のトレーニング精度を用いて本手法を検証した。
その結果,提案手法は任意の次元に対して有効であり,より深いnnモデルの推定にも拡張できることが示唆された。
この研究は、研究者がディープラーニングを理解する難しい問題を前進させる新しい方法の出発点となるかもしれない。
関連論文リスト
- Fundamental limits of overparametrized shallow neural networks for
supervised learning [11.136777922498355]
本研究では,教師ネットワークが生成した入力-出力ペアから学習した2層ニューラルネットワークについて検討する。
この結果は,トレーニングデータとネットワーク重み間の相互情報,すなわちベイズ最適一般化誤差に関連する境界の形で得られる。
論文 参考訳(メタデータ) (2023-07-11T08:30:50Z) - Reliable extrapolation of deep neural operators informed by physics or
sparse observations [2.887258133992338]
ディープニューラルネットワークは、ディープニューラルネットワークを介して無限次元関数空間間の非線形マッピングを学習することができる。
DeepONetsは科学と工学の新しいシミュレーションパラダイムを提供する。
本稿では,外挿下での安全な予測を保証する5つの信頼性学習手法を提案する。
論文 参考訳(メタデータ) (2022-12-13T03:02:46Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
スパイキングニューラルネットワーク(SNN)は、生物学的可視性や教師なし学習能力など、脳にインスパイアされた機械学習アルゴリズムである。
本稿では,リニアリーキー・インテグレート・アンド・ファイア・モデル(LIF/SNN)の生物学的パラメータとReLU-AN/Deep Neural Networks(DNN)のパラメータとの正確な数学的マッピングを確立する。
論文 参考訳(メタデータ) (2022-05-31T17:02:26Z) - Network Gradient Descent Algorithm for Decentralized Federated Learning [0.2867517731896504]
本稿では,コミュニケーションベースネットワーク上で実行される新しい勾配勾配アルゴリズムである,完全に分散化されたフェデレーション学習アルゴリズムについて検討する。
NGD法では、統計(パラメータ推定など)のみを通信し、プライバシーのリスクを最小限に抑える必要がある。
学習速度とネットワーク構造の両方が,NGD推定器の統計的効率を決定する上で重要な役割を担っていることがわかった。
論文 参考訳(メタデータ) (2022-05-06T02:53:31Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。