Scalable Gaussian Process Variational Autoencoders
- URL: http://arxiv.org/abs/2010.13472v3
- Date: Wed, 24 Feb 2021 17:56:18 GMT
- Title: Scalable Gaussian Process Variational Autoencoders
- Authors: Metod Jazbec, Matthew Ashman, Vincent Fortuin, Michael Pearce, Stephan
Mandt, Gunnar R\"atsch
- Abstract summary: We propose a new scalable GP-VAE model that outperforms existing approaches in terms of runtime and memory footprint, is easy to implement, and allows for joint end-to-end optimization of all components.
- Score: 17.345687261000045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional variational autoencoders fail in modeling correlations between
data points due to their use of factorized priors. Amortized Gaussian process
inference through GP-VAEs has led to significant improvements in this regard,
but is still inhibited by the intrinsic complexity of exact GP inference. We
improve the scalability of these methods through principled sparse inference
approaches. We propose a new scalable GP-VAE model that outperforms existing
approaches in terms of runtime and memory footprint, is easy to implement, and
allows for joint end-to-end optimization of all components.
Related papers
- Deep Transformed Gaussian Processes [0.0]
Transformed Gaussian Processes (TGPs) are processes specified by transforming samples from the joint distribution from a prior process (typically a GP) using an invertible transformation.
We propose a generalization of TGPs named Deep Transformed Gaussian Processes (DTGPs), which follows the trend of concatenating layers of processes.
Experiments conducted evaluate the proposed DTGPs in multiple regression datasets, achieving good scalability and performance.
arXiv Detail & Related papers (2023-10-27T16:09:39Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Modular Gaussian Processes for Transfer Learning [0.0]
We present a framework for transfer learning based on modular variational Gaussian processes (GP)
We develop a module-based method that builds ensemble GP models without revisiting any data.
Our method avoids undesired data centralisation, reduces rising computational costs and allows the transfer of learned uncertainty metrics after training.
arXiv Detail & Related papers (2021-10-26T09:15:18Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local
Cross-Validation [1.2233362977312945]
We present MuyGPs, a novel efficient GP hyper parameter estimation method.
MuyGPs builds upon prior methods that take advantage of the nearest neighbors structure of the data.
We show that our method outperforms all known competitors both in terms of time-to-solution and the root mean squared error of the predictions.
arXiv Detail & Related papers (2021-04-29T18:10:21Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Optimizing generalization on the train set: a novel gradient-based
framework to train parameters and hyperparameters simultaneously [0.0]
Generalization is a central problem in Machine Learning.
We present a novel approach based on a new measure of risk that allows us to develop novel fully automatic procedures for generalization.
arXiv Detail & Related papers (2020-06-11T18:04:36Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
We propose a novel variational family that allows for retaining covariances between latent processes while achieving fast convergence.
We provide an efficient implementation of our new approach and apply it to several benchmark datasets.
It yields excellent results and strikes a better balance between accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.
arXiv Detail & Related papers (2020-05-22T11:10:59Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.