Modular Gaussian Processes for Transfer Learning
- URL: http://arxiv.org/abs/2110.13515v1
- Date: Tue, 26 Oct 2021 09:15:18 GMT
- Title: Modular Gaussian Processes for Transfer Learning
- Authors: Pablo Moreno-Mu\~noz, Antonio Art\'es-Rodr\'iguez and Mauricio A.
\'Alvarez
- Abstract summary: We present a framework for transfer learning based on modular variational Gaussian processes (GP)
We develop a module-based method that builds ensemble GP models without revisiting any data.
Our method avoids undesired data centralisation, reduces rising computational costs and allows the transfer of learned uncertainty metrics after training.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a framework for transfer learning based on modular variational
Gaussian processes (GP). We develop a module-based method that having a
dictionary of well fitted GPs, one could build ensemble GP models without
revisiting any data. Each model is characterised by its hyperparameters,
pseudo-inputs and their corresponding posterior densities. Our method avoids
undesired data centralisation, reduces rising computational costs and allows
the transfer of learned uncertainty metrics after training. We exploit the
augmentation of high-dimensional integral operators based on the
Kullback-Leibler divergence between stochastic processes to introduce an
efficient lower bound under all the sparse variational GPs, with different
complexity and even likelihood distribution. The method is also valid for
multi-output GPs, learning correlations a posteriori between independent
modules. Extensive results illustrate the usability of our framework in
large-scale and multi-task experiments, also compared with the exact inference
methods in the literature.
Related papers
- Amortized Variational Inference for Deep Gaussian Processes [0.0]
Deep Gaussian processes (DGPs) are multilayer generalizations of Gaussian processes (GPs)
We introduce amortized variational inference for DGPs, which learns an inference function that maps each observation to variational parameters.
Our method performs similarly or better than previous approaches at less computational cost.
arXiv Detail & Related papers (2024-09-18T20:23:27Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
This paper presents a balanced meta-causal learner (BMCL), which includes a balanced task generation module (BTG) and a meta-causal feature learning module (MCFL)
BMCL effectively identifies the class-invariant visual regions for classification and may serve as a general framework to improve the performance of the state-of-the-art methods.
arXiv Detail & Related papers (2022-08-22T09:07:02Z) - Transfer Learning with Gaussian Processes for Bayesian Optimization [9.933956770453438]
We provide a unified view on hierarchical GP models for transfer learning, which allows us to analyze the relationship between methods.
We develop a novel closed-form boosted GP transfer model that fits between existing approaches in terms of complexity.
We evaluate the performance of the different approaches in large-scale experiments and highlight strengths and weaknesses of the different transfer-learning methods.
arXiv Detail & Related papers (2021-11-22T14:09:45Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Collaborative Nonstationary Multivariate Gaussian Process Model [2.362467745272567]
We propose a novel model called the collaborative nonstationary Gaussian process model(CNMGP)
CNMGP allows us to model data in which outputs do not share a common input set, with a computational complexity independent of the size of the inputs and outputs.
We show that our model generally pro-vides better predictive performance than the state-of-the-art, and also provides estimates of time-varying correlations that differ across outputs.
arXiv Detail & Related papers (2021-06-01T18:25:22Z) - Scalable Gaussian Process Variational Autoencoders [17.345687261000045]
We propose a new scalable GP-VAE model that outperforms existing approaches in terms of runtime and memory footprint, is easy to implement, and allows for joint end-to-end optimization of all components.
arXiv Detail & Related papers (2020-10-26T10:26:02Z) - Modulating Scalable Gaussian Processes for Expressive Statistical
Learning [25.356503463916816]
Gaussian process (GP) is interested in learning the statistical relationship between inputs and outputs, since it offers not only the prediction mean but also the associated variability.
This article studies new scalable GP paradigms including the non-stationary heteroscedastic GP, the mixture of GPs and the latent GP, which introduce additional latent variables to modulate the outputs or inputs in order to learn richer, non-Gaussian statistical representation.
arXiv Detail & Related papers (2020-08-29T06:41:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.