論文の概要: Contrastive Graph Neural Network Explanation
- arxiv url: http://arxiv.org/abs/2010.13663v1
- Date: Mon, 26 Oct 2020 15:32:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 19:41:59.206840
- Title: Contrastive Graph Neural Network Explanation
- Title(参考訳): コントラストグラフニューラルネットワークの説明
- Authors: Lukas Faber, Amin K. Moghaddam, Roger Wattenhofer
- Abstract要約: グラフニューラルネットワークは構造化データの問題に対して顕著な結果を得るが、ブラックボックス予測器として現れる。
我々は、訓練データの基礎となる分布に準拠するグラフを使用しなければならないと論じる。
本稿では,このパラダイムに従う新しいコントラストGNN説明手法を提案する。
- 参考スコア(独自算出の注目度): 13.234975857626749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks achieve remarkable results on problems with structured
data but come as black-box predictors. Transferring existing explanation
techniques, such as occlusion, fails as even removing a single node or edge can
lead to drastic changes in the graph. The resulting graphs can differ from all
training examples, causing model confusion and wrong explanations. Thus, we
argue that explicability must use graphs compliant with the distribution
underlying the training data. We coin this property Distribution Compliant
Explanation (DCE) and present a novel Contrastive GNN Explanation (CoGE)
technique following this paradigm. An experimental study supports the efficacy
of CoGE.
- Abstract(参考訳): グラフニューラルネットワークは構造化データの問題に対して顕著な結果をもたらすが、ブラックボックス予測器として現れる。
隠蔽のような既存の説明手法の転送は、単一ノードやエッジを削除してもグラフに劇的な変化をもたらす可能性があるため失敗する。
結果として得られるグラフは、すべてのトレーニング例と異なり、モデルの混乱と誤った説明を引き起こします。
したがって、説明可能性にはトレーニングデータの基礎となる分布に準拠するグラフを使わなければならない。
本稿では,この特性分布対応説明法(DCE)を考案し,このパラダイムに倣い,新しいコントラストGNN説明法(CoGE)技術を提案する。
実験的研究はCoGEの有効性を支持する。
関連論文リスト
- PAC Learnability under Explanation-Preserving Graph Perturbations [15.83659369727204]
グラフニューラルネットワーク(GNN)はグラフ上で動作し、グラフ構造化データの複雑な関係と依存関係を活用する。
グラフ説明は、その分類ラベルに関して入力グラフの「ほぼ」統計量である部分グラフである。
本研究は、GNNの設計と訓練において、そのような摂動不変性を利用する2つの方法を検討する。
論文 参考訳(メタデータ) (2024-02-07T17:23:15Z) - Factorized Explainer for Graph Neural Networks [7.382632811417645]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習する能力によって、注目を集めている。
GNN予測を理解するために、ポストホックなインスタンスレベルの説明法が提案されている。
理論的性能保証を伴う新しい因子化説明モデルを提案する。
論文 参考訳(メタデータ) (2023-12-09T15:29:45Z) - MixupExplainer: Generalizing Explanations for Graph Neural Networks with
Data Augmentation [6.307753856507624]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習する能力によって、注目を集めている。
GNN予測を理解するために、ポストホックなインスタンスレベルの説明法が提案されている。
我々は,既存手法における分布シフト問題の存在に光を当て,説明の質に影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-15T15:46:38Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
グラフニューラルネットワーク(GNN)は、グラフィカルなタスクをエンドツーエンドで処理するニューラルネットワークの一種である。
GNNの複雑なダイナミクスは、グラフの特徴のどの部分が予測に強く寄与しているかを理解するのを困難にしている。
本研究では,グラフ内の重要な構造を検出するために,フレキシブルモデルに依存しない説明法を提案する。
論文 参考訳(メタデータ) (2023-02-04T09:46:47Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - EEGNN: Edge Enhanced Graph Neural Networks [1.0246596695310175]
そこで本研究では,このような劣化した性能現象の新たな説明法を提案する。
このような単純化は、グラフの構造情報を取得するためにメッセージパッシング層の可能性を減らすことができることを示す。
EEGNNは、提案したディリクレ混合ポアソングラフモデルから抽出した構造情報を用いて、様々なディープメッセージパスGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-08-12T15:24:55Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
既存の説明手法は,教師付き設定,例えばノード分類,グラフ分類に重点を置いているが,教師なしグラフレベルの表現学習に関する説明はまだ探索されていない。
本稿では,非教師付きグラフ表現における説明問題に対処するために,インフォメーション・ボトルネックの原則(IB)を推進し,新しい原理であるtextitUnsupervised Subgraph Information Bottleneck(USIB)を導出する。
また,グラフ表現とラベル空間上の説明部分グラフの関連性も理論的に解析し,表現の堅牢性が説明部分グラフの忠実性に寄与することを明らかにする。
論文 参考訳(メタデータ) (2022-05-20T02:50:15Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。