論文の概要: Towards Explanation for Unsupervised Graph-Level Representation Learning
- arxiv url: http://arxiv.org/abs/2205.09934v1
- Date: Fri, 20 May 2022 02:50:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-23 13:37:26.093256
- Title: Towards Explanation for Unsupervised Graph-Level Representation Learning
- Title(参考訳): 教師なしグラフレベル表現学習の説明に向けて
- Authors: Qinghua Zheng, Jihong Wang, Minnan Luo, Yaoliang Yu, Jundong Li, Lina
Yao, Xiaojun Chang
- Abstract要約: 既存の説明手法は,教師付き設定,例えばノード分類,グラフ分類に重点を置いているが,教師なしグラフレベルの表現学習に関する説明はまだ探索されていない。
本稿では,非教師付きグラフ表現における説明問題に対処するために,インフォメーション・ボトルネックの原則(IB)を推進し,新しい原理であるtextitUnsupervised Subgraph Information Bottleneck(USIB)を導出する。
また,グラフ表現とラベル空間上の説明部分グラフの関連性も理論的に解析し,表現の堅牢性が説明部分グラフの忠実性に寄与することを明らかにする。
- 参考スコア(独自算出の注目度): 108.31036962735911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the superior performance of Graph Neural Networks (GNNs) in various
domains, there is an increasing interest in the GNN explanation problem
"\emph{which fraction of the input graph is the most crucial to decide the
model's decision?}" Existing explanation methods focus on the supervised
settings, \eg, node classification and graph classification, while the
explanation for unsupervised graph-level representation learning is still
unexplored. The opaqueness of the graph representations may lead to unexpected
risks when deployed for high-stake decision-making scenarios. In this paper, we
advance the Information Bottleneck principle (IB) to tackle the proposed
explanation problem for unsupervised graph representations, which leads to a
novel principle, \textit{Unsupervised Subgraph Information Bottleneck} (USIB).
We also theoretically analyze the connection between graph representations and
explanatory subgraphs on the label space, which reveals that the expressiveness
and robustness of representations benefit the fidelity of explanatory
subgraphs. Experimental results on both synthetic and real-world datasets
demonstrate the superiority of our developed explainer and the validity of our
theoretical analysis.
- Abstract(参考訳): 様々な領域におけるグラフニューラルネットワーク(gnns)の優れた性能のため、gnnの説明問題「入力グラフのどの部分がモデルの決定に最も重要であるか?
既存の説明方法は教師付き設定、例えば、ノード分類、グラフ分類に焦点を当てているが、教師なしグラフレベルの表現学習の説明はまだ未検討である。
グラフ表現の不透明さは、高い意思決定シナリオにデプロイする際の予期せぬリスクを引き起こす可能性がある。
本稿では,非教師付きグラフ表現における説明問題に対処するために,インフォメーション・ボトルネックの原理(IB)を推し進め,新しい原理である「textit{Unsupervised Subgraph Information Bottleneck} (USIB)」を導いた。
また,ラベル空間におけるグラフ表現と説明サブグラフの関係を理論的に解析し,表現の表現性と頑健性が説明サブグラフの忠実さに寄与することを明らかにした。
合成と実世界の両方のデータセットに対する実験結果から,開発した説明装置の優位性と理論解析の有効性が示された。
関連論文リスト
- Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
グラフレベルの異常検出(GLAD)は、コレクションの大多数と比べて顕著な相違を示すグラフを識別することを目的としている。
本稿では,異常なグラフを検出し,同時に情報的説明を生成する自己解釈グラフaNomaly dETectionモデル(SIGNET)を提案する。
論文 参考訳(メタデータ) (2023-10-25T10:10:07Z) - Learning Robust Representation through Graph Adversarial Contrastive
Learning [6.332560610460623]
既存の研究では、グラフニューラルネットワーク(GNN)によって生成されたノード表現が、敵の攻撃に対して脆弱であることが示されている。
本稿では,グラフ自己教師型学習に対数拡張を導入することにより,新しいグラフ適応型コントラスト学習フレームワーク(GraphACL)を提案する。
論文 参考訳(メタデータ) (2022-01-31T07:07:51Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
基礎となるバイアスのないグラフから学習することで、バイアスのない表現を得るための、原則化された新しい方法を提案する。
この新たな視点に基づいて、そのような基礎となるグラフを明らかにするための2つの補完的手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T18:44:37Z) - Recognizing Predictive Substructures with Subgraph Information
Bottleneck [97.19131149357234]
IB-subgraph というサブグラフを認識するための新しいサブグラフ情報ボトルネック(SIB)フレームワークを提案する。
相互情報の抽出性とグラフデータの離散的性質は、SIBの目的を最適化することが難しいことで知られている。
グラフ学習と大規模ポイントクラウドタスクの実験は、ib-subgraphの優れた特性を示している。
論文 参考訳(メタデータ) (2021-03-20T11:19:43Z) - SUGAR: Subgraph Neural Network with Reinforcement Pooling and
Self-Supervised Mutual Information Mechanism [33.135006052347194]
本稿では,グラフ分類のための階層型サブグラフレベル選択および埋め込み型グラフニューラルネットワーク,すなわちシュガーを提案する。
SUGARは、原グラフの代表的な部分として印象的なサブグラフを抽出し、サブグラフレベルのパターンを明らかにすることにより、スケッチグラフを再構築する。
グラフ間の部分グラフ表現を区別するために,自己教師付き相互情報機構を提案する。
論文 参考訳(メタデータ) (2021-01-20T15:06:16Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization [8.14036521415919]
教師なしグラフ表現学習法,Unsupervised Hierarchical Graph Representation (UHGR)を提案する。
本手法は,「ローカル」表現と「グローバル」表現の相互情報の最大化に焦点をあてる。
その結果,提案手法は,いくつかのベンチマークにおいて,最先端の教師付き手法に匹敵する結果が得られることがわかった。
論文 参考訳(メタデータ) (2020-03-18T18:21:48Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。