論文の概要: HarperValleyBank: A Domain-Specific Spoken Dialog Corpus
- arxiv url: http://arxiv.org/abs/2010.13929v2
- Date: Fri, 19 Mar 2021 16:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 19:40:22.620305
- Title: HarperValleyBank: A Domain-Specific Spoken Dialog Corpus
- Title(参考訳): HarperValleyBank:ドメイン特有な対話コーパス
- Authors: Mike Wu, Jonathan Nafziger, Anthony Scodary, Andrew Maas
- Abstract要約: HarperValleyBankは、パブリックドメインのダイアログコーパスである。
このデータは単純な消費者銀行の対話をシミュレートし、1,446人の人間と会話から約23時間の音声を含む。
- 参考スコア(独自算出の注目度): 7.331287001215395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce HarperValleyBank, a free, public domain spoken dialog corpus.
The data simulate simple consumer banking interactions, containing about 23
hours of audio from 1,446 human-human conversations between 59 unique speakers.
We selected intents and utterance templates to allow realistic variation while
controlling overall task complexity and limiting vocabulary size to about 700
unique words. We provide audio data along with transcripts and annotations for
speaker identity, caller intent, dialog actions, and emotional valence. The
data size and domain specificity makes for quick transcription experiments with
modern end-to-end neural approaches. Further, we provide baselines for
representation learning, adapting recent work to embed waveforms for downstream
prediction tasks. Our experiments show that tasks using our annotations are
sensitive to both the model choice and corpus size.
- Abstract(参考訳): 本稿では,無料のパブリックドメイン音声対話コーパスであるHarperValleyBankを紹介する。
このデータは、59人のユニークな話者間の1,446人の人間と人間の会話から約23時間の音声を含む、シンプルな消費者銀行の対話をシミュレートする。
目的と発話テンプレートを選択し,タスクの複雑さを制御し,語彙サイズを700語程度に制限しながら,現実的な変化を可能にする。
音声データと、話者識別、発声意図、ダイアログアクション、情緒評価のためのテキストとアノテーションを提供する。
データサイズとドメイン特異性は、現代のエンドツーエンドのニューラルアプローチで素早く転写実験を行う。
さらに,近年の手法を応用し,下流予測タスクに波形を埋め込むことにより,表現学習のベースラインを提供する。
実験の結果,アノテーションを用いたタスクはモデル選択とコーパスサイズの両方に敏感であることがわかった。
関連論文リスト
- Scaling Speech-Text Pre-training with Synthetic Interleaved Data [31.77653849518526]
音声言語モデル(SpeechLM)は音声入力を受け入れ、音声出力を生成し、より自然な人間とコンピュータの相互作用を可能にする。
従来のSpeechLMの開発手法は、教師なし音声データとパラレル音声テキストデータの可用性の制限によって制約されている。
本稿では,テキストコーパスから得られた大規模合成インターリーブデータを活用することによって,音声テキスト事前学習のスケールアップを行う手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T17:19:09Z) - Identifying Speakers in Dialogue Transcripts: A Text-based Approach Using Pretrained Language Models [83.7506131809624]
本稿では,デジタルメディアアーカイブにおけるコンテンツアクセシビリティと検索可能性を高める重要な課題である,対話テキスト中の話者名を識別する手法を提案する。
本稿では,メディアサムコーパスから派生した大規模データセットについて述べる。
本稿では,話者名を正確に属性付けるために,対話中の文脈的手がかりを活用する,話者IDに適したトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2024-07-16T18:03:58Z) - Natural language guidance of high-fidelity text-to-speech with synthetic
annotations [13.642358232817342]
本稿では,話者識別,スタイル,記録条件の様々な側面をラベル付けするスケーラブルな手法を提案する。
次に、この手法を45k時間データセットに適用し、音声言語モデルを訓練する。
その結果, アクセント, 韻律スタイル, チャネル条件, 音響条件の多岐にわたる高忠実度音声生成が得られた。
論文 参考訳(メタデータ) (2024-02-02T21:29:34Z) - Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue [71.15186328127409]
パラリンGPT(Paralin GPT)
モデルは、シリアライズされたマルチタスクフレームワーク内の入力プロンプトとして、テキスト、音声埋め込み、およびパラ言語属性の会話コンテキストを取る。
音声対話データセットとして,感情ラベルをパラ言語属性として含むSwitchboard-1コーパスを利用する。
論文 参考訳(メタデータ) (2023-12-23T18:14:56Z) - Few-Shot Spoken Language Understanding via Joint Speech-Text Models [18.193191170754744]
テキストと協調的に事前学習した音声表現モデルに関する最近の研究は、音声表現の改善の可能性を示している。
このような共有表現を活用して、音声言語理解タスクにおける限られたデータ可用性の持続的課題に対処する。
事前訓練された音声テキストモデルを用いることで、テキスト上で微調整されたモデルを音声テストデータに効果的に転送できることが分かる。
論文 参考訳(メタデータ) (2023-10-09T17:59:21Z) - Can Language Models Learn to Listen? [96.01685069483025]
本稿では,話者の言葉に基づく社会的対話における聞き手から適切な表情応答を生成するための枠組みを提案する。
提案手法は,VQ-VAEを用いて定量化したリスナーの顔のジェスチャー列であるリスナーの応答を自己回帰的に予測する。
生成したリスナーの動きは,定量的メトリクスと質的ユーザスタディを通じて,言語意味論に精通し,反映していることを示す。
論文 参考訳(メタデータ) (2023-08-21T17:59:02Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZは音声TODのための大規模音声テキストデータセットである。
SpokenWOZでは、クロスターンスロットと推論スロット検出が新たな課題である。
論文 参考訳(メタデータ) (2023-05-22T13:47:51Z) - SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data [100.46303484627045]
本稿では,事前定義した統一表現と音声とテキストの事前学習を協調させるクロスモーダル音声言語モデル(SpeechLM)を提案する。
具体的には、音声とテキストのモダリティをブリッジするために、2つの別の離散トークン化器を導入する。
音声認識, 音声翻訳, ユニバーサル表現評価フレームワーク SUPERB など, 様々な音声言語処理タスクにおける音声LM の評価を行った。
論文 参考訳(メタデータ) (2022-09-30T09:12:10Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
本稿では,対話における対話コミュニケーションをモデル化するための枠組みを提案する。
我々は、対応するリスナー動作の複数の可能性を自動回帰的に出力する。
本手法は,非言語的ダイアド相互作用の多モーダルおよび非決定論的性質を有機的に捕捉する。
論文 参考訳(メタデータ) (2022-04-18T17:58:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。