論文の概要: Scaling Speech-Text Pre-training with Synthetic Interleaved Data
- arxiv url: http://arxiv.org/abs/2411.17607v1
- Date: Tue, 26 Nov 2024 17:19:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:56.760883
- Title: Scaling Speech-Text Pre-training with Synthetic Interleaved Data
- Title(参考訳): 合成インターリーブデータを用いた音声テキスト事前学習のスケーリング
- Authors: Aohan Zeng, Zhengxiao Du, Mingdao Liu, Lei Zhang, Shengmin Jiang, Yuxiao Dong, Jie Tang,
- Abstract要約: 音声言語モデル(SpeechLM)は音声入力を受け入れ、音声出力を生成し、より自然な人間とコンピュータの相互作用を可能にする。
従来のSpeechLMの開発手法は、教師なし音声データとパラレル音声テキストデータの可用性の制限によって制約されている。
本稿では,テキストコーパスから得られた大規模合成インターリーブデータを活用することによって,音声テキスト事前学習のスケールアップを行う手法を提案する。
- 参考スコア(独自算出の注目度): 31.77653849518526
- License:
- Abstract: Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction compared to text-based large language models (LLMs). Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data, which are significantly less abundant than text pre-training data, thereby limiting their scalability as LLMs. We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora, eliminating the need for parallel speech-text datasets. Our method efficiently constructs speech-text interleaved data by sampling text spans from existing text corpora and synthesizing corresponding speech spans using a text-to-token model, bypassing the need to generate actual speech. We also employ a supervised speech tokenizer derived from an automatic speech recognition (ASR) model by incorporating a vector-quantized bottleneck into the encoder. This supervised training approach results in discrete speech tokens with strong semantic preservation even at lower sampling rates (e.g. 12.5Hz), while still maintaining speech reconstruction quality. Starting from a pre-trained language model and scaling our pre-training to 1 trillion tokens (with 600B synthetic interleaved speech-text data), we achieve state-of-the-art performance in speech language modeling and spoken question answering, improving performance on spoken questions tasks from the previous SOTA of 13% (Moshi) to 31%. We further demonstrate that by fine-tuning the pre-trained model with speech dialogue data, we can develop an end-to-end spoken chatbot that achieves competitive performance comparable to existing baselines in both conversational abilities and speech quality, even operating exclusively in the speech domain.
- Abstract(参考訳): 音声言語モデル(SpeechLM)は音声入力を受け入れ、音声出力を生成する。
従来のSpeechLMの開発手法は、教師なし音声データと、テキスト事前学習データよりもはるかに少ない並列音声テキストデータの可用性に制約され、LLMとしてのスケーラビリティが制限される。
本稿では,テキストコーパスから抽出した大規模合成インターリーブデータを活用することによって,音声テキスト事前学習のスケールアップを行う手法を提案する。
提案手法は,既存のテキストコーパスからテキストスパンをサンプリングし,テキスト・ツー・トケンモデルを用いて対応する音声スパンを合成することにより,実際の音声を生成する必要性を回避し,音声テキストインターリーブドデータを効率的に構築する。
また、ベクトル量子化ボトルネックをエンコーダに組み込むことにより、自動音声認識(ASR)モデルから導出される教師付き音声トークンを用いる。
この教師付きトレーニング手法は,低サンプリングレート(例:12.5Hz)でも強い意味保存を有する個別音声トークンを生成できるが,音声再構成の品質は維持されている。
事前学習した言語モデルから1兆トークンまで(600Bの合成音声テキストデータを含む)、音声言語モデリングと音声質問応答における最先端のパフォーマンスを実現し、13%(モシ)の従来のSOTAタスクのパフォーマンスを31%に向上させる。
さらに,事前学習したモデルを音声対話データで微調整することにより,会話能力と音声品質の両面において,既存のベースラインに匹敵する競争性能を達成できるエンドツーエンド音声チャットボットを開発できることを示す。
関連論文リスト
- VoiceTextBlender: Augmenting Large Language Models with Speech Capabilities via Single-Stage Joint Speech-Text Supervised Fine-Tuning [64.56272011710735]
大規模言語モデル(LLM)のバックボーンの低ランク適応(LoRA)に対して,新しい単一段階共同音声テキストSFTアプローチを提案する。
従来のSpeechLMの7Bまたは13Bパラメータと比較すると,我々の3Bモデルは様々な音声ベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-23T00:36:06Z) - Few-Shot Spoken Language Understanding via Joint Speech-Text Models [18.193191170754744]
テキストと協調的に事前学習した音声表現モデルに関する最近の研究は、音声表現の改善の可能性を示している。
このような共有表現を活用して、音声言語理解タスクにおける限られたデータ可用性の持続的課題に対処する。
事前訓練された音声テキストモデルを用いることで、テキスト上で微調整されたモデルを音声テストデータに効果的に転送できることが分かる。
論文 参考訳(メタデータ) (2023-10-09T17:59:21Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
本稿では,音声エンコーダとテキストデコーダの表現を共有単位エンコーダに接続する,統一モーダル音声単位テキスト事前学習モデルであるSpeechUTを提案する。
提案するSpeechUTは,自動音声認識(ASR)と音声翻訳(ST)タスクに基づいて微調整および評価を行う。
論文 参考訳(メタデータ) (2022-10-07T17:57:45Z) - SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data [100.46303484627045]
本稿では,事前定義した統一表現と音声とテキストの事前学習を協調させるクロスモーダル音声言語モデル(SpeechLM)を提案する。
具体的には、音声とテキストのモダリティをブリッジするために、2つの別の離散トークン化器を導入する。
音声認識, 音声翻訳, ユニバーサル表現評価フレームワーク SUPERB など, 様々な音声言語処理タスクにおける音声LM の評価を行った。
論文 参考訳(メタデータ) (2022-09-30T09:12:10Z) - SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text
Joint Pre-Training [33.02912456062474]
我々は、ラベルなしテキストのBERT目的とラベルなし音声のw2v-BERT目的とを併用した単一のエンコーダを構築する。
プレトレーニング中に音声データとテキストデータの両方を組み込むことで、CoVoST2音声翻訳における下流品質が大幅に向上することが実証された。
論文 参考訳(メタデータ) (2021-10-20T00:59:36Z) - Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration [62.75234183218897]
話者の訓練データなしで自然かつ一貫性のあるターゲット音声を生成する一段階の文脈認識フレームワークを提案する。
変換器をベースとしたデコーダを用いて,編集音声のメルスペクトルを生成する。
これは最近のゼロショット TTS エンジンを大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-09-12T04:17:53Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
本稿では、中間テキスト生成に頼ることなく、ある言語から別の言語に音声を変換する直接音声音声翻訳(S2ST)モデルを提案する。
そこで本稿では,ラベルなし音声コーパスから学習した自己教師付き離散表現の予測を提案する。
対象のテキスト書き起こしが利用可能となると、同一の推論パスで2つのモード出力(音声とテキスト)を同時に生成できる、共同音声認識とテキストトレーニングを備えたマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-12T17:40:43Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
エンド・ツー・エンドの音声翻訳は、ある言語における音声を、エンド・ツー・エンドの方法で他の言語におけるテキストに変換することを目的としている。
既存のほとんどの手法では、音響表現と意味情報を同時に学習するために、単一のエンコーダを持つエンコーダ・デコーダ構造を用いる。
本稿では,音声とテキスト間のモダリティギャップを埋めることで,エンドツーエンドのモデル性能を向上させることを目的とした音声翻訳モデルのための音声テキスト適応手法を提案する。
論文 参考訳(メタデータ) (2020-10-28T12:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。