Impact of Spherical Coordinates Transformation Pre-processing in Deep
Convolution Neural Networks for Brain Tumor Segmentation and Survival
Prediction
- URL: http://arxiv.org/abs/2010.13967v2
- Date: Mon, 23 Nov 2020 00:56:25 GMT
- Title: Impact of Spherical Coordinates Transformation Pre-processing in Deep
Convolution Neural Networks for Brain Tumor Segmentation and Survival
Prediction
- Authors: Carlo Russo, Sidong Liu, Antonio Di Ieva
- Abstract summary: We propose a novel method aimed to feed Deep Convolutional Neural Networks (DCNN) with spherical space transformed input data.
In this work, the spherical coordinates transformation has been applied as a preprocessing method.
The LesionEncoder framework has been applied to automatically extract features from DCNN models, achieving 0.586 accuracy of OS prediction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-processing and Data Augmentation play an important role in Deep
Convolutional Neural Networks (DCNN). Whereby several methods aim for
standardization and augmentation of the dataset, we here propose a novel method
aimed to feed DCNN with spherical space transformed input data that could
better facilitate feature learning compared to standard Cartesian space images
and volumes. In this work, the spherical coordinates transformation has been
applied as a preprocessing method that, used in conjunction with normal MRI
volumes, improves the accuracy of brain tumor segmentation and patient overall
survival (OS) prediction on Brain Tumor Segmentation (BraTS) Challenge 2020
dataset. The LesionEncoder framework has been then applied to automatically
extract features from DCNN models, achieving 0.586 accuracy of OS prediction on
the validation data set, which is one of the best results according to BraTS
2020 leaderboard.
Related papers
- Region-wise stacking ensembles for estimating brain-age using MRI [0.23301643766310373]
High-dimensional MRI data pose challenges to building generalizable and interpretable models.
We present a conceptually novel two-level stacking ensemble (SE) approach.
First-level predictions showed improved and more robust aging signal.
arXiv Detail & Related papers (2025-01-17T12:24:28Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - Better Generalization of White Matter Tract Segmentation to Arbitrary
Datasets with Scaled Residual Bootstrap [1.30536490219656]
White matter (WM) tract segmentation is a crucial step for brain connectivity studies.
We propose a WM tract segmentation approach that improves the generalization with scaled residual bootstrap.
arXiv Detail & Related papers (2023-09-25T09:31:34Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Deep Learning for Size and Microscope Feature Extraction and
Classification in Oral Cancer: Enhanced Convolution Neural Network [30.343802446139186]
Overfitting issue has been the reason behind deep learning technology not being successfully implemented in oral cancer images classification.
The proposed system consists of Enhanced Convolutional Neural Network that uses an autoencoder technique to increase the efficiency of the feature extraction process.
arXiv Detail & Related papers (2022-08-06T08:26:45Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
In this study, we evaluate the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on datasets rat and human brain.
We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS.
arXiv Detail & Related papers (2022-03-01T16:33:15Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Spherical coordinates transformation pre-processing in Deep Convolution
Neural Networks for brain tumor segmentation in MRI [0.0]
Deep Convolutional Neural Networks (DCNN) have recently shown very promising results.
DCNN models need large annotated datasets to achieve good performance.
In this work, a 3D Spherical coordinates transform has been hypothesized to improve DCNN models' accuracy.
arXiv Detail & Related papers (2020-08-17T05:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.