Triple-view Convolutional Neural Networks for COVID-19 Diagnosis with
Chest X-ray
- URL: http://arxiv.org/abs/2010.14091v1
- Date: Tue, 27 Oct 2020 06:15:32 GMT
- Title: Triple-view Convolutional Neural Networks for COVID-19 Diagnosis with
Chest X-ray
- Authors: Jianjia Zhang
- Abstract summary: This paper proposes triple-view convolutional neural networks for COVID-19 diagnosis with CXR images.
The proposed network structure respects the anatomical structure of human lungs and is well aligned with clinical diagnosis of COVID-19 in practice.
- Score: 1.956959549209676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Coronavirus Disease 2019 (COVID-19) is affecting increasingly large
number of people worldwide, posing significant stress to the health care
systems. Early and accurate diagnosis of COVID-19 is critical in screening of
infected patients and breaking the person-to-person transmission. Chest X-ray
(CXR) based computer-aided diagnosis of COVID-19 using deep learning becomes a
promising solution to this end. However, the diverse and various radiographic
features of COVID-19 make it challenging, especially when considering each CXR
scan typically only generates one single image. Data scarcity is another issue
since collecting large-scale medical CXR data set could be difficult at
present. Therefore, how to extract more informative and relevant features from
the limited samples available becomes essential. To address these issues,
unlike traditional methods processing each CXR image from a single view, this
paper proposes triple-view convolutional neural networks for COVID-19 diagnosis
with CXR images. Specifically, the proposed networks extract individual
features from three views of each CXR image, i.e., the left lung view, the
right lung view and the overall view, in three streams and then integrate them
for joint diagnosis. The proposed network structure respects the anatomical
structure of human lungs and is well aligned with clinical diagnosis of
COVID-19 in practice. In addition, the labeling of the views does not require
experts' domain knowledge, which is needed by many existing methods. The
experimental results show that the proposed method achieves state-of-the-art
performance, especially in the more challenging three class classification
task, and admits wide generality and high flexibility.
Related papers
- Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical.
We propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales.
arXiv Detail & Related papers (2023-04-25T16:56:12Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
The use of chest X-ray (CXR) imaging as a complementary screening strategy to RT-PCR testing is increasing.
Many visual perception models have been proposed for COVID-19 screening based on CXR imaging.
We introduce COVIDx CXR-3, a large-scale benchmark dataset of CXR images for supporting COVID-19 computer vision research.
arXiv Detail & Related papers (2022-06-08T04:39:44Z) - COVID-Net CT-S: 3D Convolutional Neural Network Architectures for
COVID-19 Severity Assessment using Chest CT Images [85.00197722241262]
We introduce COVID-Net CT-S, a suite of deep convolutional neural networks for predicting lung disease severity due to COVID-19 infection.
A 3D residual architecture design is leveraged to learn volumetric visual indicators characterizing the degree of COVID-19 lung disease severity.
arXiv Detail & Related papers (2021-05-04T04:44:41Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Fused Deep Convolutional Neural Network for Precision Diagnosis of
COVID-19 Using Chest X-Ray Images [0.0]
We propose a computer-aided diagnosis (CAD) to accurately classify chest X-ray scans of COVID-19 and normal subjects by fine-tuning several neural networks.
Using k-fold cross-validation and a bagging ensemble, we achieve an accuracy of 99.7% and a sensitivity of 100%.
arXiv Detail & Related papers (2020-09-15T02:27:20Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Deep Learning COVID-19 Features on CXR using Limited Training Data Sets [40.45289250518209]
We propose a patch-based convolutional neural network approach with a relatively small number of trainable parameters for COVID-19 diagnosis.
Experimental results show that our method achieves state-of-the-art performance and provides clinically interpretable saliency maps.
arXiv Detail & Related papers (2020-04-13T03:44:42Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.