Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks
- URL: http://arxiv.org/abs/2004.11676v5
- Date: Tue, 21 Jul 2020 10:27:36 GMT
- Title: Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks
- Authors: Narinder Singh Punn and Sonali Agarwal
- Abstract summary: COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
- Score: 4.294650528226683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The novel coronavirus 2019 (COVID-19) is a respiratory syndrome that
resembles pneumonia. The current diagnostic procedure of COVID-19 follows
reverse-transcriptase polymerase chain reaction (RT-PCR) based approach which
however is less sensitive to identify the virus at the initial stage. Hence, a
more robust and alternate diagnosis technique is desirable. Recently, with the
release of publicly available datasets of corona positive patients comprising
of computed tomography (CT) and chest X-ray (CXR) imaging; scientists,
researchers and healthcare experts are contributing for faster and automated
diagnosis of COVID-19 by identifying pulmonary infections using deep learning
approaches to achieve better cure and treatment. These datasets have limited
samples concerned with the positive COVID-19 cases, which raise the challenge
for unbiased learning. Following from this context, this article presents the
random oversampling and weighted class loss function approach for unbiased
fine-tuned learning (transfer learning) in various state-of-the-art deep
learning approaches such as baseline ResNet, Inception-v3, Inception ResNet-v2,
DenseNet169, and NASNetLarge to perform binary classification (as normal and
COVID-19 cases) and also multi-class classification (as COVID-19, pneumonia,
and normal case) of posteroanterior CXR images. Accuracy, precision, recall,
loss, and area under the curve (AUC) are utilized to evaluate the performance
of the models. Considering the experimental results, the performance of each
model is scenario dependent; however, NASNetLarge displayed better scores in
contrast to other architectures, which is further compared with other recently
proposed approaches. This article also added the visual explanation to
illustrate the basis of model classification and perception of COVID-19 in CXR
images.
Related papers
- Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection [0.24578723416255752]
This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
arXiv Detail & Related papers (2023-09-22T06:09:48Z) - Detection of COVID19 in Chest X-Ray Images Using Transfer Learning [0.0]
This paper investigates the concept of transfer learning using two of the most well-known VGGNet architectures, namely VGG-16 and VGG-19.
We generated two different datasets to evaluate the performance of the proposed system for the identification of positive Covid-19 instances in a multiclass and binary classification problems.
arXiv Detail & Related papers (2023-04-09T05:02:04Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - Pinball-OCSVM for early-stage COVID-19 diagnosis with limited
posteroanterior chest X-ray images [3.4935179780034247]
This research proposes a novel pinball loss function based one-class support vector machine (PB-OCSVM) that can work in presence of limited COVID-19 positive CXR samples.
The performance of the proposed model is compared with conventional OCSVM and existing deep learning models, and the experimental results prove that the proposed model outperformed over state-of-the-art methods.
arXiv Detail & Related papers (2020-10-16T02:34:15Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - A Cascaded Learning Strategy for Robust COVID-19 Pneumonia Chest X-Ray
Screening [11.250464234368478]
We introduce a comprehensive screening platform for the COVID-19 (a.k.a., SARS-CoV-2) pneumonia.
The proposed AI-based system works on chest x-ray (CXR) images to predict whether a patient is infected with the COVID-19 disease.
arXiv Detail & Related papers (2020-04-24T15:44:51Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.