A robust low data solution: dimension prediction of semiconductor
nanorods
- URL: http://arxiv.org/abs/2010.14111v1
- Date: Tue, 27 Oct 2020 07:51:38 GMT
- Title: A robust low data solution: dimension prediction of semiconductor
nanorods
- Authors: Xiaoli Liu, Yang Xu, Jiali Li, Xuanwei Ong, Salwa Ali Ibrahim, Tonio
Buonassisi, Xiaonan Wang
- Abstract summary: Robust deep neural network-based regression algorithm has been developed for precise prediction of length, width, and aspect ratios of semiconductor nanorods (NRs)
Deep neural network is further applied to develop regression model which demonstrated the well performed prediction on both the original and generated data with a similar distribution.
- Score: 5.389015968413988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise control over dimension of nanocrystals is critical to tune the
properties for various applications. However, the traditional control through
experimental optimization is slow, tedious and time consuming. Herein a robust
deep neural network-based regression algorithm has been developed for precise
prediction of length, width, and aspect ratios of semiconductor nanorods (NRs).
Given there is limited experimental data available (28 samples), a Synthetic
Minority Oversampling Technique for regression (SMOTE-REG) has been employed
for the first time for data generation. Deep neural network is further applied
to develop regression model which demonstrated the well performed prediction on
both the original and generated data with a similar distribution. The
prediction model is further validated with additional experimental data,
showing accurate prediction results. Additionally, Local Interpretable
Model-Agnostic Explanations (LIME) is used to interpret the weight for each
variable, which corresponds to its importance towards the target dimension,
which is approved to be well correlated well with experimental observations.
Related papers
- Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Deep Partially Linear Transformation Model for Right-Censored Survival Data [9.991327369572819]
This paper introduces a deep partially linear transformation model (DPLTM) as a general and flexible framework for estimation, inference and prediction.
Comprehensive simulation studies demonstrate the impressive performance of the proposed estimation procedure in terms of both estimation accuracy and prediction power.
arXiv Detail & Related papers (2024-12-10T15:50:43Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Semi-Supervised Deep Sobolev Regression: Estimation and Variable Selection by ReQU Neural Network [3.4623717820849476]
We propose SDORE, a Semi-supervised Deep Sobolev Regressor, for the nonparametric estimation of the underlying regression function and its gradient.
Our study includes a thorough analysis of the convergence rates of SDORE in $L2$-norm, achieving the minimax optimality.
arXiv Detail & Related papers (2024-01-09T13:10:30Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Deep Neural Networks for Semiparametric Frailty Models via H-likelihood [0.0]
We propose a new deep neural network based frailty (DNN-FM) for prediction of time-to-event data.
Joint estimators of the new h-likelihood model provide maximum likelihood for fixed parameters and best unbiased predictors for random frailties.
arXiv Detail & Related papers (2023-07-13T06:46:51Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
In this study, we evaluate the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on datasets rat and human brain.
We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS.
arXiv Detail & Related papers (2022-03-01T16:33:15Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.