論文の概要: Multi-XScience: A Large-scale Dataset for Extreme Multi-document
Summarization of Scientific Articles
- arxiv url: http://arxiv.org/abs/2010.14235v1
- Date: Tue, 27 Oct 2020 12:10:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 11:03:40.607026
- Title: Multi-XScience: A Large-scale Dataset for Extreme Multi-document
Summarization of Scientific Articles
- Title(参考訳): Multi-XScience:科学論文の超多文書要約のための大規模データセット
- Authors: Yao Lu, Yue Dong, Laurent Charlin
- Abstract要約: Multi-XScienceは、科学論文から作成された大規模マルチドキュメント要約データセットである。
私たちの研究は、抽象モデリングアプローチを好むデータセット構築プロトコルである極端な要約にインスパイアされています。
- 参考スコア(独自算出の注目度): 20.96874676302819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-document summarization is a challenging task for which there exists
little large-scale datasets. We propose Multi-XScience, a large-scale
multi-document summarization dataset created from scientific articles.
Multi-XScience introduces a challenging multi-document summarization task:
writing the related-work section of a paper based on its abstract and the
articles it references. Our work is inspired by extreme summarization, a
dataset construction protocol that favours abstractive modeling approaches.
Descriptive statistics and empirical results---using several state-of-the-art
models trained on the Multi-XScience dataset---reveal that Multi-XScience is
well suited for abstractive models.
- Abstract(参考訳): マルチドキュメントの要約は、大規模なデータセットがほとんど存在しない難題である。
学術論文から作成した大規模マルチドキュメント要約データセットであるMulti-XScienceを提案する。
multi-xscienceは、論文の関連作業セクションとその引用記事を書くという、挑戦的なマルチドキュメント要約タスクを導入している。
私たちの研究は、抽象的モデリングアプローチを好むデータセット構築プロトコルであるextreme summarizationにインスパイアされています。
記述統計と経験的結果-Multi-XScienceデータセットでトレーニングされたいくつかの最先端モデルを使用--Multi-XScienceは抽象モデルによく適している、という認識。
関連論文リスト
- SciER: An Entity and Relation Extraction Dataset for Datasets, Methods, and Tasks in Scientific Documents [49.54155332262579]
我々は,科学論文のデータセット,メソッド,タスクに関連するエンティティに対して,新たなエンティティと関係抽出データセットをリリースする。
我々のデータセットには、24k以上のエンティティと12kの関係を持つ106の注釈付きフルテキストの科学出版物が含まれています。
論文 参考訳(メタデータ) (2024-10-28T15:56:49Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
このデータセットには、スキーマ図、シミュレーション画像、マクロ/顕微鏡写真、実験的可視化などの図が含まれている。
我々は,6つのプロプライエタリモデルと10以上のオープンソースモデルを評価し,科学的フィギュアキャプションと複数選択質問のベンチマークを開発した。
データセットとベンチマークは、さらなる研究をサポートするためにリリースされる予定だ。
論文 参考訳(メタデータ) (2024-07-06T00:40:53Z) - SKT5SciSumm -- Revisiting Extractive-Generative Approach for Multi-Document Scientific Summarization [24.051692189473723]
マルチドキュメント科学要約(MDSS)のためのハイブリッドフレームワークSKT5SciSummを提案する。
我々は,Citation-Informed Transformer (SPECTER) を用いたScientific Paper Embeddingsの文変換バージョンを活用し,文のエンコードと表現を行う。
我々は、抽出文を用いて抽象要約を生成するために、T5モデルのファミリを用いる。
論文 参考訳(メタデータ) (2024-02-27T08:33:31Z) - mPLUG-PaperOwl: Scientific Diagram Analysis with the Multimodal Large
Language Model [73.38800189095173]
本研究はマルチモーダルLLMのマルチモーダルダイアグラム解析機能を強化することに焦点を当てる。
高品質な論文のLatexソースファイルを解析することにより、マルチモーダルなダイアグラム理解データセットM-Paperを慎重に構築する。
M-Paperは、画像やラテックス符号のフォーマットの数字や表を含む、複数の科学的図の合同理解をサポートする最初のデータセットである。
論文 参考訳(メタデータ) (2023-11-30T04:43:26Z) - Generating a Structured Summary of Numerous Academic Papers: Dataset and
Method [20.90939310713561]
本稿では,各トピックに関する多数の学術論文の包括的な要約を生成するための,最初の大規模データセットであるBigSurveyを提案する。
我々は,7万件以上の調査論文から対象要約を収集し,その430万件の参考論文の要約を入力文書として活用する。
数十の入力文書から多種多様な内容を整理するために,カテゴリベースアライメント・スパース・トランスフォーマー (CAST) と呼ばれる要約手法を提案する。
論文 参考訳(メタデータ) (2023-02-09T11:42:07Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - TLDW: Extreme Multimodal Summarisation of News Videos [76.50305095899958]
TL;DW - Too Long; Didn't Watch のシナリオに対して,Xtreme Multimodal Summarisation with Multimodal Output (XMSMO)を導入する。
XMSMOは,映像と文書のペアを非常に短い長さの要約にまとめることを目的としており,その内容は1つの表紙フレームを視覚的要約として,1つの文をテキスト要約として構成する。
本手法は, 参照要約を使わずに, 最適輸送計画に基づく意味分布間の距離の観点から, 視覚的およびテキスト的カバレッジを最適化することにより, 訓練を行う。
論文 参考訳(メタデータ) (2022-10-16T08:19:59Z) - Topic-Guided Abstractive Multi-Document Summarization [21.856615677793243]
多文書要約(MDS)の重要なポイントは、様々な文書間の関係を学習することである。
異種グラフとして複数の文書を表現できる新しい抽象MDSモデルを提案する。
我々は、クロスドキュメントセマンティックユニットとして機能する潜在トピックを共同で発見するために、ニューラルトピックモデルを採用している。
論文 参考訳(メタデータ) (2021-10-21T15:32:30Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
単一文書の要約と多文書の要約の重大な違いは、文書の中で健全なコンテンツがどのように現れるかである。
本稿では,複数文書要約における文書間補完効果とその活用をモデル化する。
提案手法は各文書から合成を生成し,他の文書から有意な内容を識別する支援者として機能する。
論文 参考訳(メタデータ) (2021-10-15T03:55:42Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。