Contour Integration using Graph-Cut and Non-Classical Receptive Field
- URL: http://arxiv.org/abs/2010.14561v2
- Date: Mon, 10 May 2021 21:07:53 GMT
- Title: Contour Integration using Graph-Cut and Non-Classical Receptive Field
- Authors: Zahra Mousavi Kouzehkanan, Reshad Hosseini, Babak Nadjar Araabi
- Abstract summary: We propose a novel method to detect image contours from the extracted edge segments of other algorithms.
The proposed energy functions are inspired by the surround modulation in the primary visual cortex that help suppressing texture noise.
- Score: 4.935491924643742
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many edge and contour detection algorithms give a soft-value as an output and
the final binary map is commonly obtained by applying an optimal threshold. In
this paper, we propose a novel method to detect image contours from the
extracted edge segments of other algorithms. Our method is based on an
undirected graphical model with the edge segments set as the vertices. The
proposed energy functions are inspired by the surround modulation in the
primary visual cortex that help suppressing texture noise. Our algorithm can
improve extracting the binary map, because it considers other important factors
such as connectivity, smoothness, and length of the contour beside the
soft-values. Our quantitative and qualitative experimental results show the
efficacy of the proposed method.
Related papers
- Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation.
The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz.
We show that our proposed implementation resolves up to 32% more verification cases than present approaches.
arXiv Detail & Related papers (2024-08-23T15:02:09Z) - Linear Anchored Gaussian Mixture Model for Location and Width Computations of Objects in Thick Line Shape [1.7205106391379021]
3D image gray level representation is considered as a finite mixture model of a statistical distribution.
Expectation-Maximization algorithm (Algo1) using the original image as input data is used to estimate the model parameters.
modified EM algorithm (Algo2) is detailed.
arXiv Detail & Related papers (2024-04-03T20:05:00Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - Differentiable Rendering with Reparameterized Volume Sampling [2.717399369766309]
In view synthesis, a neural radiance field approximates underlying density and radiance fields based on a sparse set of scene pictures.
This rendering algorithm is fully differentiable and facilitates gradient-based optimization of the fields.
We propose a simple end-to-end differentiable sampling algorithm based on inverse transform sampling.
arXiv Detail & Related papers (2023-02-21T19:56:50Z) - LoNe Sampler: Graph node embeddings by coordinated local neighborhood
sampling [0.7614628596146599]
Local graph neighborhood sampling is a fundamental computational problem that is at the heart of algorithms for node representation learning.
We present LoNe Sampler, a suite of algorithms for generating discrete node embeddings by Local Neighborhood Sampling.
arXiv Detail & Related papers (2022-11-28T08:04:26Z) - Learning Heuristics for the Maximum Clique Enumeration Problem Using Low
Dimensional Representations [0.0]
We use a learning framework for a pruning process of the input graph towards reducing the clique of the maximum enumeration problem.
We study the role of using different vertex representations on the performance of this runtime method.
We observe that using local graph features in the classification process produce more accurate results when combined with a feature elimination process.
arXiv Detail & Related papers (2022-10-30T22:04:32Z) - A Novel Falling-Ball Algorithm for Image Segmentation [0.14337588659482517]
Region-based Falling-Ball algorithm is presented, which is a region-based segmentation algorithm.
The proposed algorithm detects the catchment basins by assuming that a ball falling from hilly terrains will stop in a catchment basin.
arXiv Detail & Related papers (2021-05-06T12:41:10Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Understanding Integrated Gradients with SmoothTaylor for Deep Neural
Network Attribution [70.78655569298923]
Integrated Gradients as an attribution method for deep neural network models offers simple implementability.
It suffers from noisiness of explanations which affects the ease of interpretability.
The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method.
arXiv Detail & Related papers (2020-04-22T10:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.