Linear Anchored Gaussian Mixture Model for Location and Width Computations of Objects in Thick Line Shape
- URL: http://arxiv.org/abs/2404.03043v3
- Date: Wed, 15 May 2024 01:13:34 GMT
- Title: Linear Anchored Gaussian Mixture Model for Location and Width Computations of Objects in Thick Line Shape
- Authors: Nafaa Nacereddine, Aicha Baya Goumeidane, Djemel Ziou,
- Abstract summary: 3D image gray level representation is considered as a finite mixture model of a statistical distribution.
Expectation-Maximization algorithm (Algo1) using the original image as input data is used to estimate the model parameters.
modified EM algorithm (Algo2) is detailed.
- Score: 1.7205106391379021
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate detection of the centerline of a thick linear structure and good estimation of its thickness are challenging topics in many real-world applications such X-ray imaging, remote sensing and lane marking detection in road traffic. Model-based approaches using Hough and Radon transforms are often used but, are not recommended for thick line detection, whereas methods based on image derivatives need further step-by-step processing making their efficiency dependent on each step outcome. In this paper, a novel paradigm to better detect thick linear objects is presented, where the 3D image gray level representation is considered as a finite mixture model of a statistical distribution, called linear anchored Gaussian distribution and parametrized by a scale factor to describe the structure thickness and radius and angle parameters to localize the structure centerline. Expectation-Maximization algorithm (Algo1) using the original image as input data is used to estimate the model parameters. To rid the data of irrelevant information brought by nonuniform and noisy background, a modified EM algorithm (Algo2) is detailed. In Experiments, the proposed algorithms show promising results on real-world images and synthetic images corrupted by blur and noise, where Algo2, using Hessian-based angle initialization, outperforms Algo1 and Algo2 with random angle initialization, in terms of running time and structure location and thickness computation accuracy.
Related papers
- Generalization of pixel-wise phase estimation by CNN and improvement of
phase-unwrapping by MRF optimization for one-shot 3D scan [0.621405559652172]
Active stereo technique using single pattern projection, a.k.a. one-shot 3D scan, have drawn a wide attention from industry, medical purposes, etc.
One severe drawback of one-shot 3D scan is sparse reconstruction.
We propose a pixel-wise technique for one-shot scan, which is applicable to any types of static pattern if the pattern is regular and periodic.
arXiv Detail & Related papers (2023-09-26T10:45:04Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
We propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior.
We calculate the gradient of the log-likelihood function for PR and determine the Lipschitz constant.
We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm.
arXiv Detail & Related papers (2023-05-12T18:08:47Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA [0.0]
This paper describes a novel non-parametric noise reduction technique from the point of view of Bayesian inference.
It iteratively evaluates possible smoothed versions of the data, the smooth models, obtaining an estimation of the underlying signal.
Iterations stop based on the evidence and the $chi2$ statistic of the last smooth model, and we compute the expected value of the signal.
arXiv Detail & Related papers (2022-01-13T18:54:31Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
We introduce an efficient fully-convolutional architecture that can leverage both spatial and photometric context simultaneously.
Using separable 4D convolutions and 2D heat-maps reduces the size and makes more efficient.
arXiv Detail & Related papers (2021-03-22T18:06:58Z) - Real-time Dense Reconstruction of Tissue Surface from Stereo Optical
Video [10.181846237133167]
We propose an approach to reconstruct dense three-dimensional (3D) model of tissue surface from stereo optical videos in real-time.
The basic idea is to first extract 3D information from video frames by using stereo matching, and then to mosaic the reconstructed 3D models.
Experimental results on ex- and in vivo data showed that the reconstructed 3D models have high resolution texture with an accuracy error of less than 2 mm.
arXiv Detail & Related papers (2020-07-16T19:14:05Z) - Understanding Integrated Gradients with SmoothTaylor for Deep Neural
Network Attribution [70.78655569298923]
Integrated Gradients as an attribution method for deep neural network models offers simple implementability.
It suffers from noisiness of explanations which affects the ease of interpretability.
The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method.
arXiv Detail & Related papers (2020-04-22T10:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.