Bilinear dynamic mode decomposition for quantum control
- URL: http://arxiv.org/abs/2010.14577v2
- Date: Wed, 2 Dec 2020 17:23:48 GMT
- Title: Bilinear dynamic mode decomposition for quantum control
- Authors: Andy Goldschmidt, Eurika Kaiser, Jonathan L. Dubois, Steven L.
Brunton, J. Nathan Kutz
- Abstract summary: We develop a data-driven regression procedure, bilinear dynamic mode decomposition (biDMD), that leverages time-series measurements to establish quantum system identification for QOC.
We demonstrate the efficacy and performance of the approach on a number of representative quantum systems, showing that it also matches experimental results.
- Score: 4.069849286089743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven methods for establishing quantum optimal control (QOC) using
time-dependent control pulses tailored to specific quantum dynamical systems
and desired control objectives are critical for many emerging quantum
technologies. We develop a data-driven regression procedure, bilinear dynamic
mode decomposition (biDMD), that leverages time-series measurements to
establish quantum system identification for QOC. The biDMD optimization
framework is a physics-informed regression that makes use of the known
underlying Hamiltonian structure. Further, the biDMD can be modified to model
both fast and slow sampling of control signals, the latter by way of
stroboscopic sampling strategies. The biDMD method provides a flexible,
interpretable, and adaptive regression framework for real-time, online
implementation in quantum systems. Further, the method has strong theoretical
connections to Koopman theory, which approximates non-linear dynamics with
linear operators. In comparison with many machine learning paradigms, it
requires minimal data and the biDMD model is easily updated as new data is
collected. We demonstrate the efficacy and performance of the approach on a
number of representative quantum systems, showing that it also matches
experimental results.
Related papers
- Neural Projected Quantum Dynamics: a systematic study [0.0]
We address the challenge of simulating unitary quantum dynamics in large systems using Neural Quantum States.
This work offers a comprehensive formalization of the projected time-dependent Variational Monte Carlo (p-tVMC) method.
arXiv Detail & Related papers (2024-10-14T17:01:33Z) - Higher order quantum reservoir computing for non-intrusive reduced-order models [0.0]
Quantum reservoir computing technique (QRC) is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems.
We show that QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner.
arXiv Detail & Related papers (2024-07-31T13:37:04Z) - Data-Driven Characterization of Latent Dynamics on Quantum Testbeds [0.23408308015481663]
We augment the dynamical equation of quantum systems described by the Lindblad master equation with a parameterized source term.
We consider a structure preserving augmentation that learns and distinguishes unitary from dissipative latent dynamics parameterized by a basis of linear operators.
We demonstrate that our interpretable, structure preserving, and nonlinear models are able to improve the prediction accuracy of the Lindblad master equation.
arXiv Detail & Related papers (2024-01-18T09:28:44Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Controlling quantum many-body systems using reduced-order modelling [0.0]
We propose an efficient approach for solving a class of control problems for many-body quantum systems.
Simulating dynamics of such a reduced-order model, viewed as a digital twin" of the original subsystem, is significantly more efficient.
Our results will find direct applications in the study of many-body systems, in probing non-trivial quasiparticle properties, as well as in development control tools for quantum computing devices.
arXiv Detail & Related papers (2022-11-01T13:58:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Modeling Time-Dependent Systems using Dynamic Quantum Bayesian Networks [1.14219428942199]
We investigate the modeling of time-dependent system behavior using a dynamic quantum Bayesian network (DQBN)
In this paper, we combine the modeling capabilities of DBN with the computational advantage of quantum amplitude amplification for efficient modeling and control of time-dependent systems.
We implement the proposed DQBN framework on IBM Q hardware, and compare its performance with classical DBN implementation and the IBM Qiskit simulator.
arXiv Detail & Related papers (2021-07-01T19:41:28Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.