Characterizing Non-Markovian Dynamics of Open Quantum Systems
- URL: http://arxiv.org/abs/2503.22147v1
- Date: Fri, 28 Mar 2025 04:43:24 GMT
- Title: Characterizing Non-Markovian Dynamics of Open Quantum Systems
- Authors: Sohail Reddy,
- Abstract summary: We develop a structure-preserving approach to characterizing non-Markovian evolution using the time-convolutionless (TCL) master equation.<n>We demonstrate our methodology using experimental data from a superconducting qubit at the Quantum Device Integration Testbed (QuDIT) at Lawrence Livermore National Laboratory.<n>These findings provide valuable insights into efficient modeling strategies for open quantum systems, with implications for quantum control and error mitigation in near-term quantum processors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Characterizing non-Markovian quantum dynamics is essential for accurately modeling open quantum systems, particularly in near-term quantum technologies. In this work, we develop a structure-preserving approach to characterizing non-Markovian evolution using the time-convolutionless (TCL) master equation, considering both linear and nonlinear formulations. To parameterize the master equation, we explore two distinct techniques: the Karhunen-Loeve (KL) expansion, which provides an optimal basis representation of the dynamics, and neural networks, which offer a data-driven approach to learning system-environment interactions. We demonstrate our methodology using experimental data from a superconducting qubit at the Quantum Device Integration Testbed (QuDIT) at Lawrence Livermore National Laboratory (LLNL). Our results show that while neural networks can capture complex dependencies, the KL expansion yields the most accurate predictions of the qubit's non-Markovian dynamics, highlighting its effectiveness in structure-preserving quantum system characterization. These findings provide valuable insights into efficient modeling strategies for open quantum systems, with implications for quantum control and error mitigation in near-term quantum processors.
Related papers
- A learning agent-based approach to the characterization of open quantum systems [0.0]
We introduce the open Quantum Model Learning Agent (oQMLA) framework to account for Markovian noise through the Liouvillian formalism.<n>By simultaneously learning the Hamiltonian and jump operators, oQMLA independently captures both the coherent and incoherent dynamics of a system.<n>We validate our implementation in simulated scenarios of increasing complexity, demonstrating its robustness to hardware-induced measurement errors.
arXiv Detail & Related papers (2025-01-09T16:25:17Z) - Quantum reservoir computing on random regular graphs [0.0]
Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.<n>We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.<n>Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
arXiv Detail & Related papers (2024-09-05T16:18:03Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Data-Driven Characterization of Latent Dynamics on Quantum Testbeds [0.23408308015481663]
We augment the dynamical equation of quantum systems described by the Lindblad master equation with a parameterized source term.
We consider a structure preserving augmentation that learns and distinguishes unitary from dissipative latent dynamics parameterized by a basis of linear operators.
We demonstrate that our interpretable, structure preserving, and nonlinear models are able to improve the prediction accuracy of the Lindblad master equation.
arXiv Detail & Related papers (2024-01-18T09:28:44Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Probing non-Markovian quantum dynamics with data-driven analysis: Beyond
"black-box" machine learning models [0.0]
We propose a data-driven approach to the analysis of the non-Markovian dynamics of open quantum systems.
Our method allows, on the one hand, capturing the effective dimension of the environment and the spectrum of the joint system-environment quantum dynamics.
We demonstrate the performance of the proposed approach with various models of open quantum systems.
arXiv Detail & Related papers (2021-03-26T14:27:33Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.