Higher order quantum reservoir computing for non-intrusive reduced-order models
- URL: http://arxiv.org/abs/2407.21602v1
- Date: Wed, 31 Jul 2024 13:37:04 GMT
- Title: Higher order quantum reservoir computing for non-intrusive reduced-order models
- Authors: Vinamr Jain, Romit Maulik,
- Abstract summary: Quantum reservoir computing technique (QRC) is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems.
We show that QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting dynamical systems is of importance to numerous real-world applications. When possible, dynamical systems forecasts are constructed based on first-principles-based models such as through the use of differential equations. When these equations are unknown, non-intrusive techniques must be utilized to build predictive models from data alone. Machine learning (ML) methods have recently been used for such tasks. Moreover, ML methods provide the added advantage of significant reductions in time-to-solution for predictions in contrast with first-principle based models. However, many state-of-the-art ML-based methods for forecasting rely on neural networks, which may be expensive to train and necessitate requirements for large amounts of memory. In this work, we propose a quantum mechanics inspired ML modeling strategy for learning nonlinear dynamical systems that provides data-driven forecasts for complex dynamical systems with reduced training time and memory costs. This approach, denoted the quantum reservoir computing technique (QRC), is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems via classical linear feedback connections. By mapping the dynamical state to a suitable quantum representation amenable to unitary operations, QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner. We demonstrate the efficacy of this framework through benchmark forecasts of the NOAA Optimal Interpolation Sea Surface Temperature dataset and compare the performance of QRC to other ML methods.
Related papers
- Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements.
We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array.
arXiv Detail & Related papers (2024-09-15T22:44:09Z) - Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints [0.7252027234425334]
This paper introduces a novel, data-driven framework that synergizes physics-based priors with advanced machine learning techniques.
Our framework showcases four algorithms, each embedding a specific physics-based prior tailored to a particular class of nonlinear systems.
The integration of these priors also enhances the expressive power of neural networks, enabling them to capture complex patterns typical in physical phenomena.
arXiv Detail & Related papers (2024-06-20T23:10:41Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - Automatic Evolution of Machine-Learning based Quantum Dynamics with
Uncertainty Analysis [4.629634111796585]
The long short-term memory recurrent neural network (LSTM-RNN) models are used to simulate the long-time quantum dynamics.
This work builds an effective machine learning approach to simulate the dynamics evolution of open quantum systems.
arXiv Detail & Related papers (2022-05-07T08:53:55Z) - Dynamical simulation via quantum machine learning with provable
generalization [2.061594137938085]
We develop a framework for using QML methods to simulate quantum dynamics on near-term quantum hardware.
We rigorously analyze the training data requirements of an algorithm within this framework.
Our numerics exhibit efficient scaling with problem size, and we simulate 20 times longer than Trotterization on IBMQ-Bogota.
arXiv Detail & Related papers (2022-04-21T17:15:24Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Predicting toxicity by quantum machine learning [11.696069523681178]
We develop QML models for predicting the toxicity of 221 phenols on the basis of quantitative structure activity relationship.
Results suggest that our data encoding enhanced by quantum entanglement provided more expressive power than the previous ones.
arXiv Detail & Related papers (2020-08-18T02:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.