Improving Text Relationship Modeling with Artificial Data
- URL: http://arxiv.org/abs/2010.14640v1
- Date: Tue, 27 Oct 2020 22:04:54 GMT
- Title: Improving Text Relationship Modeling with Artificial Data
- Authors: Peter Organisciak, Maggie Ryan
- Abstract summary: We apply and evaluate a synthetic data approach to relationship classification in digital libraries.
We find that for classification on whole-part relationships between books, synthetic data improves a deep neural network classifier by 91%.
- Score: 0.07614628596146598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation uses artificially-created examples to support supervised
machine learning, adding robustness to the resulting models and helping to
account for limited availability of labelled data. We apply and evaluate a
synthetic data approach to relationship classification in digital libraries,
generating artificial books with relationships that are common in digital
libraries but not easier inferred from existing metadata. We find that for
classification on whole-part relationships between books, synthetic data
improves a deep neural network classifier by 91%. Further, we consider the
ability of synthetic data to learn a useful new text relationship class from
fully artificial training data.
Related papers
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Understanding Synthetic Context Extension via Retrieval Heads [51.8869530817334]
We investigate fine-tuning on synthetic data for three long-context tasks that require retrieval and reasoning.
We find that models trained on synthetic data fall short of the real data, but surprisingly, the mismatch can be interpreted.
Our results shed light on how to interpret synthetic data fine-tuning performance and how to approach creating better data for learning real-world capabilities over long contexts.
arXiv Detail & Related papers (2024-10-29T17:55:00Z) - From Measurement Instruments to Data: Leveraging Theory-Driven Synthetic Training Data for Classifying Social Constructs [2.0591508284285376]
We examine the potential of theory-driven synthetic training data for improving the measurement of social constructs.
We show that synthetic data can be highly effective in reducing the need for labeled data in political topic classification.
arXiv Detail & Related papers (2024-10-16T14:42:23Z) - Synthetic continued pretraining [29.6872772403251]
We propose synthetic continued pretraining on a small corpus of domain-specific documents.
We instantiate this proposal with EntiGraph, a synthetic data augmentation algorithm.
We show how synthetic data augmentation can "rearrange" knowledge to enable more data-efficient learning.
arXiv Detail & Related papers (2024-09-11T17:21:59Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
We combine the variational autoencoder framework with graph neural networks to generate realistic synthetic relational databases.
The results indicate that real databases' structures are accurately preserved in the resulting synthetic datasets.
arXiv Detail & Related papers (2022-11-30T10:40:44Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Foundations of Bayesian Learning from Synthetic Data [1.6249267147413522]
We use a Bayesian paradigm to characterise the updating of model parameters when learning on synthetic data.
Recent results from general Bayesian updating support a novel and robust approach to synthetic-learning founded on decision theory.
arXiv Detail & Related papers (2020-11-16T21:49:17Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.