From Measurement Instruments to Data: Leveraging Theory-Driven Synthetic Training Data for Classifying Social Constructs
- URL: http://arxiv.org/abs/2410.12622v2
- Date: Thu, 17 Oct 2024 08:28:45 GMT
- Title: From Measurement Instruments to Data: Leveraging Theory-Driven Synthetic Training Data for Classifying Social Constructs
- Authors: Lukas Birkenmaier, Matthias Roth, Indira Sen,
- Abstract summary: We examine the potential of theory-driven synthetic training data for improving the measurement of social constructs.
We show that synthetic data can be highly effective in reducing the need for labeled data in political topic classification.
- Score: 2.0591508284285376
- License:
- Abstract: Computational text classification is a challenging task, especially for multi-dimensional social constructs. Recently, there has been increasing discussion that synthetic training data could enhance classification by offering examples of how these constructs are represented in texts. In this paper, we systematically examine the potential of theory-driven synthetic training data for improving the measurement of social constructs. In particular, we explore how researchers can transfer established knowledge from measurement instruments in the social sciences, such as survey scales or annotation codebooks, into theory-driven generation of synthetic data. Using two studies on measuring sexism and political topics, we assess the added value of synthetic training data for fine-tuning text classification models. Although the results of the sexism study were less promising, our findings demonstrate that synthetic data can be highly effective in reducing the need for labeled data in political topic classification. With only a minimal drop in performance, synthetic data allows for substituting large amounts of labeled data. Furthermore, theory-driven synthetic data performed markedly better than data generated without conceptual information in mind.
Related papers
- Understanding Synthetic Context Extension via Retrieval Heads [51.8869530817334]
We investigate fine-tuning on synthetic data for three long-context tasks that require retrieval and reasoning.
We find that models trained on synthetic data fall short of the real data, but surprisingly, the mismatch can be interpreted.
Our results shed light on how to interpret synthetic data fine-tuning performance and how to approach creating better data for learning real-world capabilities over long contexts.
arXiv Detail & Related papers (2024-10-29T17:55:00Z) - A Novel Taxonomy for Navigating and Classifying Synthetic Data in Healthcare Applications [9.66493160220239]
This paper proposes a novel taxonomy of synthetic data in healthcare to navigate the landscape in terms of three main varieties.
Data Proportion comprises different ratios of synthetic data in a dataset and associated pros and cons.
Data Modality refers to the different data formats amenable to synthesis and format-specific challenges.
Data Transformation concerns improving specific aspects of a dataset like its utility or privacy with synthetic data.
arXiv Detail & Related papers (2024-09-01T12:04:03Z) - Artificial Data, Real Insights: Evaluating Opportunities and Risks of Expanding the Data Ecosystem with Synthetic Data [0.0]
Synthetic Data is not new, but recent advances in Generative AI have raised interest in expanding the research toolbox.
This article provides a taxonomy of the full breadth of the Synthetic Data domain.
arXiv Detail & Related papers (2024-08-10T16:46:35Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Synthetic Data in Healthcare [10.555189948915492]
We present the cases for physical and statistical simulations for creating data and the proposed applications in healthcare and medicine.
We discuss that while synthetics can promote privacy, equity, safety and continual and causal learning, they also run the risk of introducing flaws, blind spots and propagating or exaggerating biases.
arXiv Detail & Related papers (2023-04-06T17:23:39Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
We combine the variational autoencoder framework with graph neural networks to generate realistic synthetic relational databases.
The results indicate that real databases' structures are accurately preserved in the resulting synthetic datasets.
arXiv Detail & Related papers (2022-11-30T10:40:44Z) - Measuring Utility and Privacy of Synthetic Genomic Data [3.635321290763711]
We provide the first evaluation of the utility and the privacy protection of five state-of-the-art models for generating synthetic genomic data.
Overall, there is no single approach for generating synthetic genomic data that performs well across the board.
arXiv Detail & Related papers (2021-02-05T17:41:01Z) - Improving Text Relationship Modeling with Artificial Data [0.07614628596146598]
We apply and evaluate a synthetic data approach to relationship classification in digital libraries.
We find that for classification on whole-part relationships between books, synthetic data improves a deep neural network classifier by 91%.
arXiv Detail & Related papers (2020-10-27T22:04:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.