論文の概要: A Chinese Text Classification Method With Low Hardware Requirement Based
on Improved Model Concatenation
- arxiv url: http://arxiv.org/abs/2010.14784v2
- Date: Fri, 12 Nov 2021 06:29:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 04:35:57.591375
- Title: A Chinese Text Classification Method With Low Hardware Requirement Based
on Improved Model Concatenation
- Title(参考訳): 改良されたモデル結合に基づくハードウェア要件の少ない中国語テキスト分類法
- Authors: Qingli Man, Yuanhao Zhuo
- Abstract要約: 本論文では,TextCNN,LSTM,Bi-LSTMを含む5種類のサブモデルを結合した結合モデルを提案する。
既存のアンサンブル学習法と比較して、テキスト分類ミッションでは、このモデルの精度は2%高い。
このモデルのハードウェア要件はBERTベースのモデルよりもはるかに低い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to improve the accuracy performance of Chinese text classification
models with low hardware requirements, an improved concatenation-based model is
designed in this paper, which is a concatenation of 5 different sub-models,
including TextCNN, LSTM, and Bi-LSTM. Compared with the existing ensemble
learning method, for a text classification mission, this model's accuracy is 2%
higher. Meanwhile, the hardware requirements of this model are much lower than
the BERT-based model.
- Abstract(参考訳): ハードウェア要件の少ない中国語テキスト分類モデルの精度向上を目的として,TextCNN,LSTM,Bi-LSTMを含む5種類のサブモデルの結合性を考慮した結合モデルを構築した。
既存のアンサンブル学習法と比較して、テキスト分類ミッションでは、このモデルの精度は2%高い。
一方、このモデルのハードウェア要件はBERTベースのモデルよりもはるかに低い。
関連論文リスト
- Coupling Speech Encoders with Downstream Text Models [4.679869237248675]
カスケード音声翻訳モデルを構築するためのモジュラー手法を提案する。
我々は,与えられたタスクに対して,最先端音声認識(ASR)とテキスト翻訳(MT)の性能を維持する。
論文 参考訳(メタデータ) (2024-07-24T19:29:13Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Efficient GPT Model Pre-training using Tensor Train Matrix
Representation [65.96485282393361]
大規模なトランスフォーマーモデルは数十億のパラメータを特徴としており、デプロイが困難になり、スクラッチからトレーニングコストが禁じられている。
GPT-2アーキテクチャのパラメータ数を削減すべく、完全に接続された層の行列を対応するTrain Matrix(TTM)構造に置き換える。
GPTベースのモデルは最大40%のパラメータを格納し、元のモデルに匹敵するパープレキシティを示す。
論文 参考訳(メタデータ) (2023-06-05T08:38:25Z) - Rethinking Masked Language Modeling for Chinese Spelling Correction [70.85829000570203]
言語モデルと誤りモデルという2つの異なるモデルによる共同決定として,中国語のスペル補正(CSC)について検討する。
細調整されたBERTは、言語モデルに不適合なままエラーモデルに過度に適合する傾向にあり、その結果、分布外エラーパターンへの一般化が不十分であることがわかった。
微調整中に入力シーケンスから20%の非エラートークンをランダムにマスキングする非常に単純な戦略は、エラーモデルを犠牲にすることなく、はるかに優れた言語モデルを学ぶのに十分であることを示す。
論文 参考訳(メタデータ) (2023-05-28T13:19:12Z) - N-Grammer: Augmenting Transformers with latent n-grams [35.39961549040385]
本稿では,テキストシーケンスの離散潜在表現から構築したn-gramでモデルを拡張することにより,統計言語モデリングの文献に触発されたトランスフォーマーアーキテクチャの簡易かつ効果的な変更を提案する。
我々は、C4データセットの言語モデリングにおけるN-GrammerモデルとSuperGLUEデータセットのテキスト分類を評価し、TransformerやPrimerといった強力なベースラインよりも優れていることを発見した。
論文 参考訳(メタデータ) (2022-07-13T17:18:02Z) - A Variational Hierarchical Model for Neural Cross-Lingual Summarization [85.44969140204026]
言語間の要約(英: cross-lingual summarization)とは、ある言語の文書を別の言語の要約に変換することである。
CLSに関する既存の研究は主にパイプライン手法の利用やエンドツーエンドモデルの共同トレーニングに重点を置いている。
条件付き変分自動エンコーダに基づくCLSタスクの階層モデルを提案する。
論文 参考訳(メタデータ) (2022-03-08T02:46:11Z) - Evaluation of HTR models without Ground Truth Material [2.4792948967354236]
手書き文字認識モデルの開発における評価は容易である。
しかし、開発からアプリケーションに切り替えると、評価プロセスはトリッキーになります。
我々は,レキシコンに基づく評価が,レキシコンに基づく手法と競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T01:26:09Z) - Evaluating Text Coherence at Sentence and Paragraph Levels [17.99797111176988]
本稿では,既存の文順序付け手法の段落順序付けタスクへの適応について検討する。
また、ミニデータセットとノイズの多いデータセットを人工的に作成することで、既存のモデルの学習性と堅牢性を比較する。
我々は、リカレントグラフニューラルネットワークに基づくモデルがコヒーレンスモデリングの最適選択であると結論付けている。
論文 参考訳(メタデータ) (2020-06-05T03:31:49Z) - Phone Features Improve Speech Translation [69.54616570679343]
音声翻訳の終末モデル(ST)はより緊密にカップル音声認識(ASR)と機械翻訳(MT)を行う
カスケードモデルとエンド・ツー・エンドモデルを高,中,低リソース条件で比較し,カスケードがより強いベースラインを維持していることを示す。
これらの機能は両方のアーキテクチャを改善し、エンド・ツー・エンドのモデルとカスケードのギャップを埋め、これまでの学術的成果を最大9BLEUで上回ります。
論文 参考訳(メタデータ) (2020-05-27T22:05:10Z) - Abstractive Text Summarization based on Language Model Conditioning and
Locality Modeling [4.525267347429154]
BERT言語モデルに基づいてTransformerベースのニューラルモデルをトレーニングする。
さらに,BERTウィンドウサイズよりも長いテキストのチャンクワイズ処理が可能なBERTウィンドウ方式を提案する。
我々のモデルの結果は、CNN/Daily Mailデータセットのベースラインと最先端モデルと比較される。
論文 参考訳(メタデータ) (2020-03-29T14:00:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。