Point-gap topology with complete bulk-boundary correspondence in
dissipative quantum systems
- URL: http://arxiv.org/abs/2010.14862v1
- Date: Wed, 28 Oct 2020 10:15:40 GMT
- Title: Point-gap topology with complete bulk-boundary correspondence in
dissipative quantum systems
- Authors: Jian-Song Pan, Linhu Li, and Jiangbin Gong
- Abstract summary: The spectral and dynamical properties of dissipative quantum systems are investigated from a topological point of view.
We find anomalous skin modes with exponential amplification even though the quantum system is purely dissipative.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spectral and dynamical properties of dissipative quantum systems, as
modeled by a damped oscillator in the Fock space, are investigated from a
topological point of view. Unlike a physical lattice system that is naturally
under the open boundary condition, the bounded-from-below nature of the Fock
space offers a unique setting for understanding and verifying non-Hermitian
skin modes under semi-infinity boundary conditions that are elusive in actual
physical lattices. A topological characterization based on the complex spectra
of the Liouvillian superoperator is proposed and the associated complete set of
topologically protected skin modes can be identified, thus reflecting the
complete bulk-boundary correspondence of point-gap topology generally absent in
realistic materials. Moreover, we discover anomalous skin modes with
exponential amplification even though the quantum system is purely dissipative.
Our results indicate that current studies of non-Hermitian topological matter
can greatly benefit research on quantum open systems and vice versa.
Related papers
- Geometry-dependent skin effect and anisotropic Bloch oscillations in a
non-Hermitian optical lattice [5.593595192885069]
geometry-dependent skin effect (GDSE) refers to that the localization of extensive eigenstates depends on the system's geometry under open boundary conditions.
In this paper, we demonstrate the emergence of GDSE in a two-dimensional $sp$ optical ladder lattice with on-site atom loss.
Our results reveal that the GDSE has an intrinsic anisotropic bulk dynamics independent of boundary conditions, and offer its realization and detection in quantum systems.
arXiv Detail & Related papers (2023-04-07T18:00:07Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Detecting non-Bloch topological invariants in quantum dynamics [7.544412038291252]
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian systems.
We report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks.
Our work sheds new light on the experimental investigation of non-Hermitian topology.
arXiv Detail & Related papers (2021-07-30T16:40:30Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Self-organized topological insulator due to cavity-mediated correlated
tunneling [0.0]
We discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions.
The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry.
The emerging quantum phase is a topological insulator and is found at half fillings.
arXiv Detail & Related papers (2020-11-03T13:23:06Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Realization of an anomalous Floquet topological system with ultracold
atoms [0.879504058268139]
Coherent control via periodic modulation, also known as Floquet engineering, has emerged as a powerful experimental method for the realization of novel quantum systems.
Here, we realize a system with bosonic atoms in a periodically-driven honeycomb lattice and infer the complete set of topological invariants from energy gap measurements and local Hall deflections.
arXiv Detail & Related papers (2020-02-23T06:37:33Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.