Geometry-dependent skin effect and anisotropic Bloch oscillations in a
non-Hermitian optical lattice
- URL: http://arxiv.org/abs/2304.03792v1
- Date: Fri, 7 Apr 2023 18:00:07 GMT
- Title: Geometry-dependent skin effect and anisotropic Bloch oscillations in a
non-Hermitian optical lattice
- Authors: Yi Qin, Kai Zhang, and Linhu Li
- Abstract summary: geometry-dependent skin effect (GDSE) refers to that the localization of extensive eigenstates depends on the system's geometry under open boundary conditions.
In this paper, we demonstrate the emergence of GDSE in a two-dimensional $sp$ optical ladder lattice with on-site atom loss.
Our results reveal that the GDSE has an intrinsic anisotropic bulk dynamics independent of boundary conditions, and offer its realization and detection in quantum systems.
- Score: 5.593595192885069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interplay between the non-Hermiticity and dimensionality gives rise to
exotic characteristics in higher dimensions, with one representative phenomenon
known as the geometry-dependent skin effect (GDSE), which refers to that the
localization of extensive eigenstates depends on the system's geometry under
open boundary conditions. In this paper, we demonstrate the emergence of GDSE
in a two-dimensional $sp$ optical ladder lattice with on-site atom loss, which
can be manifested by anisotropic dynamics of Bloch oscillations in the bulk of
the system. By applying a static force in different directions, the wave-packet
dynamics retrieve the complex energy spectra with either nonzero or zero
spectral winding number, indicating the presence or absence of skin
accumulation in the corresponding directions, respectively. Our results reveal
that the GDSE has an intrinsic anisotropic bulk dynamics independent of
boundary conditions, and offer its realization and detection in quantum
systems.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Dynamical Degeneracy Splitting and Directional Invisibility in
Non-Hermitian Systems [17.001487000146863]
We introduce the concept of dynamical degeneracy splitting to describe the anisotropic decay behaviors in non-Hermitian systems.
We demonstrate that systems with dynamical degeneracy splitting exhibit two distinctive features: (i) the system shows frequency-resolved non-Hermitian skin effect; (ii) Green's function exhibits anomalous at given frequency, leading to uneven broadening in spectral function and anomalous scattering.
arXiv Detail & Related papers (2022-11-14T22:35:42Z) - A Theorem on Extensive Spectral Degeneracy for Systems with Higher
Symmetries in General Dimensions [0.0]
We establish lower bounds on the spectral degeneracy of quantum systems with higher Gauge Like symmetries.
We exploit the effects of modified boundary conditions.
We briefly discuss why, in spite of the proven large degeneracy associated with infrared-ultraviolet mixing, some systems may still exhibit conventional physical behaviors.
arXiv Detail & Related papers (2022-08-24T17:50:52Z) - Subradiant edge states in an atom chain with waveguide-mediated hopping [0.0]
We analyze a system formed by two chains of identical emitters coupled to a waveguide, whose guided modes induce excitation hopping.
We find that, in the single excitation limit, the bulk topological properties of the Hamiltonian that describes the coherent dynamics of the system are identical to the ones of a one-dimensional Su-Schrieffer-Heeger model.
We analytically identify parameter regimes where edge states arise which are fully localized to the boundaries of the chain, independently of the system size.
arXiv Detail & Related papers (2022-05-27T09:35:49Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Emergent non-Hermitian localization phenomena in the synthetic space of
zero-dimensional bosonic systems [0.0]
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research.
We show how the non-Hermitian localization phenomena can naturally emerge in the synthetic field moments space of zero-dimensional bosonic systems.
arXiv Detail & Related papers (2021-10-28T16:44:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Point-gap topology with complete bulk-boundary correspondence in
dissipative quantum systems [0.0]
The spectral and dynamical properties of dissipative quantum systems are investigated from a topological point of view.
We find anomalous skin modes with exponential amplification even though the quantum system is purely dissipative.
arXiv Detail & Related papers (2020-10-28T10:15:40Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.