Overcoming the rate-directionality tradeoff: a room-temperature
ultrabright quantum light source
- URL: http://arxiv.org/abs/2010.15016v2
- Date: Tue, 3 Nov 2020 07:44:54 GMT
- Title: Overcoming the rate-directionality tradeoff: a room-temperature
ultrabright quantum light source
- Authors: Hamza Abudayyeh, Annika Brauer, Dror Liran, Boaz Lubotzky, Lars Luder,
Monika Fleischer, Ronen Rapaport
- Abstract summary: GHz-rate single photon sources at room-temperature would be essential components for various quantum applications.
Slow intrinsic decay rate and the omnidirectional emission of typical quantum emitters are two obstacles towards achieving such a goal.
We project that such miniaturized on-chip devices can reach photon rates approaching 2.3*108 single photons/second.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deterministic GHz-rate single photon sources at room-temperature would be
essential components for various quantum applications. However, both the slow
intrinsic decay rate and the omnidirectional emission of typical quantum
emitters are two obstacles towards achieving such a goal which are hard to
overcome simultaneously. Here we solve this challenge by a hybrid approach,
using a complex monolithic photonic resonator constructed of a gold nanocone
responsible for the rate enhancement, and a circular Bragg antenna for emission
directionality. A repeatable process accurately binds quantum dots to the tip
of the antenna-embedded nanocone. As a result we achieve simultaneous 20-fold
emission rate enhancement and record-high directionality leading to an increase
in the observed brightness by a factor as large as 580 (120) into an NA = 0.22
(0.5). We project that such miniaturized on-chip devices can reach photon rates
approaching 2.3*10^8 single photons/second thus enabling ultra-fast
light-matter interfaces for quantum technologies at ambient conditions.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot [0.03829341169189996]
We develop a novel device consisting of a quantum dot embedded in a circular Bragg resonator, in turn, integrated onto a micromachined piezoelectric actuator.
The resonator engineers the light-matter interaction to empower extraction efficiencies up to 0.69(4).
The actuator manipulates strain fields that tune the quantum dot for the generation of entangled photons with corrected fidelities to a maximally entangled state up to 0.96(1).
arXiv Detail & Related papers (2022-12-23T18:06:32Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Observation of large spontaneous emission rate enhancement of quantum
dots in a broken-symmetry slow-light waveguide [0.0]
We demonstrate a nanophotonic waveguide platform with embedded quantum dots (QDs)
The design uses slow-light effects in a glide-plane photonic crystal waveguide with QD tuning to match the emission frequency to the slow-light region.
We then demonstrate a 5 fold Purcell enhancement for a dot with high degree of chiral coupling to waveguide modes.
arXiv Detail & Related papers (2022-08-12T18:42:16Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - In-plane resonant excitation of quantum dots in a dual-mode
photonic-crystal waveguide with high $\beta$-factor [0.4588028371034407]
A high-quality quantum dot (QD) single-photon source is a key resource for quantum information processing.
We propose a novel dual-mode photonic-crystal waveguide that realizes direct in-plane resonant excitation of the embedded QDs.
The device has a compact footprint of $sim 50$ $mu$m$2$ and would enable stable and scalable excitation of multiple emitters for multi-photon quantum applications.
arXiv Detail & Related papers (2021-12-01T13:46:13Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.