Reversible tuning of nanowire quantum dot to atomic transitions
- URL: http://arxiv.org/abs/2309.06734v2
- Date: Tue, 11 Mar 2025 15:25:33 GMT
- Title: Reversible tuning of nanowire quantum dot to atomic transitions
- Authors: Rubayet Al Maruf, Sreesh Venuturumilli, Divya Bharadwaj, Paul Anderson, Jiawei Qiu, Yujia Yuan, Mohd Zeeshan, Behrooz Semnani, Philip J. Poole, Dan Dalacu, Kevin Resch, Michael E. Reimer, Michal Bajcsy,
- Abstract summary: We demonstrate a reversible tuning method that can tune the emission frequency of a NW-QD by more than 300 GHz with sub-GHz precision.<n>We observed up to 80% absorption of the single-photons from NW-QD in hot caesium vapour at the D1-line resonances.<n>We saw minimal effects on the fine structure splitting of the NW-QD when tuning up to 100 GHz.
- Score: 0.1814997663775301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum dots embedded in semiconductor photonic nanowires (NW-QDs) can deterministically produce single-photons and entangled photon pairs at high repetition rates. These photons can be efficiently coupled from the photonic nanowire into free space or optical fibers thanks to the sharp tip of the nanowire, which provides impedance matching. However, precise control of the NW-QD emission frequency in a way that is reversible, does not degrade the properties of the emitted photons, and can be used independently for individual NW-QDs on the same chip has so far remained a challenge. Resolving this issue is crucial for applications when interfacing the photons with quantum systems that require MHz to sub-GHz precision, such as atomic ensembles acting as memories in a quantum network. Here, we demonstrate a reversible tuning method that can tune the emission frequency of a NW-QD by more than 300 GHz with sub-GHz precision. We achieve this through gas condensation that is then partially reversed with localized laser ablation. This process finely adjusts stress applied to the quantum dots, thereby tuning their emission frequency. We validate the precision and stability of this method by tuning the frequency of the emitted single-photons across an atomic resonance to probe its absorption and dispersion. We observed up to 80\% absorption of the single-photons from NW-QD in hot caesium vapour at the D1-line resonances and a 75-fold decrease in group velocity associated with the hyperfine transitions of the D1-line ground states. We observed no discernible effects in the second-order autocorrelation function, lifetime, or linewidth of the NW-QD emission for up to 300 GHz of tuning and we saw minimal effects on the fine structure splitting of the NW-QD when tuning up to 100 GHz.
Related papers
- Cavity quantum electrodynamics with single perovskite quantum dots [0.0]
We show the deterministic and reversible coupling of individual CsPbBr$_3$ perovskite quantum dots to a tunable, high-quality factor, low mode volume fiber-based Fabry-P'erot microcavity.
By tuning the cavity mode in resonance with the quantum dot emission, we observe up to a twofold increase in single photon emission rates.
arXiv Detail & Related papers (2025-03-26T10:40:15Z) - Continuous and Reversible Electrical Tuning of Fluorescent Decay Rate via Fano Resonance [2.3592914313389253]
An auxiliary quantum object (QO) can introduce a Fano transparency in the plasmonic spectrum of a metal-shell nanoparticles.
We show that an auxiliary QO, located at the hotspot of the CSNP, can modify the LDOS, hence the decay rate of an excited dipole.
This phenomenon emerges as an invaluable tool to implement in integrated quantum technologies.
arXiv Detail & Related papers (2024-12-28T16:20:19Z) - Tunable quantum emitters on large-scale foundry silicon photonics [0.6165122427320179]
Integration of atomic quantum systems with single-emitter tunability remains an open challenge.
Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters.
We achieve single photon emission via resonance fluorescence and scalable emission wavelength tunability through an electrically controlled non-volatile memory.
arXiv Detail & Related papers (2023-06-10T15:04:30Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tunable phononic coupling in excitonic quantum emitters [6.510363316842893]
We report the deterministic creation of quantum emitters featuring highly tunable coupling between excitons and phonons.
The quantum emitters are formed in strain-induced quantum dots created in homobilayer semiconductor WSe2.
arXiv Detail & Related papers (2023-02-27T02:47:56Z) - Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Observation of large spontaneous emission rate enhancement of quantum
dots in a broken-symmetry slow-light waveguide [0.0]
We demonstrate a nanophotonic waveguide platform with embedded quantum dots (QDs)
The design uses slow-light effects in a glide-plane photonic crystal waveguide with QD tuning to match the emission frequency to the slow-light region.
We then demonstrate a 5 fold Purcell enhancement for a dot with high degree of chiral coupling to waveguide modes.
arXiv Detail & Related papers (2022-08-12T18:42:16Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Efficient DNA-driven nanocavities for approaching quasi-deterministic
strong coupling to a few fluorophores [4.138309038177141]
A strong coupling unit based on an emitter-plasmonic nanocavity system has the potential to bring devices to the microchip scale at ambient conditions.
In this work, fluorophore-modified DNA strands are utilized to drive the formation of particle-on-film plasmonic nanocavities.
The high correlation between electronic transition of the fluorophore and the cavity resonance is observed, implying more vibrational modes may be involved.
arXiv Detail & Related papers (2021-03-11T15:51:09Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Overcoming the rate-directionality tradeoff: a room-temperature
ultrabright quantum light source [0.0]
GHz-rate single photon sources at room-temperature would be essential components for various quantum applications.
Slow intrinsic decay rate and the omnidirectional emission of typical quantum emitters are two obstacles towards achieving such a goal.
We project that such miniaturized on-chip devices can reach photon rates approaching 2.3*108 single photons/second.
arXiv Detail & Related papers (2020-10-28T14:49:22Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.