Visualizing Quasiparticles from Quantum Entanglement for general 1D
phases
- URL: http://arxiv.org/abs/2010.15137v1
- Date: Wed, 28 Oct 2020 18:00:03 GMT
- Title: Visualizing Quasiparticles from Quantum Entanglement for general 1D
phases
- Authors: Elisabeth Wybo, Frank Pollmann, S. L. Sondhi, Yizhi You
- Abstract summary: We present a quantum information framework for the entanglement behavior of the low energy quasiparticle excitations in 1D systems.
We first establish an exact correspondence between the correlation matrix and the QP entanglement Hamiltonian for free fermions.
A more general understanding of such an in-gap state can be extended to a Kramers theorem for the QP entanglement Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a quantum information framework for the entanglement
behavior of the low energy quasiparticle (QP) excitations in various quantum
phases in one-dimensional (1D) systems. We first establish an exact
correspondence between the correlation matrix and the QP entanglement
Hamiltonian for free fermions and find an extended in-gap state in the QP
entanglement Hamiltonian as a consequence of the position uncertainty of the
QP. A more general understanding of such an in-gap state can be extended to a
Kramers theorem for the QP entanglement Hamiltonian, which also applies to
strongly interacting systems. Further, we present a set of ubiquitous
entanglement spectrum features, dubbed entanglement fragmentation, conditional
mutual information, and measurement induced non-local entanglement for QPs in
1D symmetry protected topological phases. Our result thus provides a new
framework to identify different phases of matter in terms of their QP
entanglement.
Related papers
- Clustering of conditional mutual information and quantum Markov structure at arbitrary temperatures [0.0]
Recent investigations have unveiled exotic quantum phases that elude characterization by simple bipartite correlation functions.
In these phases, long-range entanglement arising from tripartite correlations plays a central role.
Our findings unveil that, even at low temperatures, a broad class of tripartite entanglement cannot manifest in the long-range regime.
arXiv Detail & Related papers (2024-07-08T11:30:12Z) - Quantum State Transfer in Interacting, Multiple-Excitation Systems [41.94295877935867]
Quantum state transfer (QST) describes the coherent passage of quantum information from one node to another.
We describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST.
The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
arXiv Detail & Related papers (2024-05-10T23:46:35Z) - Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - Quantum phase transitions in quantum Hall and other topological systems:
role of the Planckian time [0.0]
We show that experimental data in the quantum critical regime for both integer and fractional QHEs can be quantitatively explained.
We show that the model also provides quantitative description of QPTs between the ground states of anomalous QHE and axion and Chern insulators.
arXiv Detail & Related papers (2023-09-01T22:25:48Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Entanglement and precession in two-dimensional dynamical quantum phase
transitions [0.0]
We extend and investigate the notion of p- and eDQPTs in two-dimensional systems by considering semi-infinite ladders of varying width.
For square lattices, we find that pDQPTs and eDQPTs persist and are characterized by similar phenomenology as in 1D.
We also demonstrate that lattices with odd number of nearest neighbors give rise to phenomenologies beyond the one-dimensional classification.
arXiv Detail & Related papers (2021-12-21T14:57:10Z) - Entanglement Spectroscopy and probing the Li-Haldane Conjecture in
Topological Quantum Matter [0.0]
Topological phases are characterized by their entanglement properties.
We propose to leverage the power of synthetic quantum systems for measuring entanglement via the Entanglement Hamiltonian.
arXiv Detail & Related papers (2021-10-08T06:13:51Z) - Experimental measurement of the divergent quantum metric of an
exceptional point [10.73176455098217]
We report the first experimental measurement of the quantum metric in a non-Hermitian system.
The specific platform under study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points.
arXiv Detail & Related papers (2020-11-24T11:31:03Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.