論文の概要: A Visuospatial Dataset for Naturalistic Verb Learning
- arxiv url: http://arxiv.org/abs/2010.15225v1
- Date: Wed, 28 Oct 2020 20:47:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 05:20:27.292243
- Title: A Visuospatial Dataset for Naturalistic Verb Learning
- Title(参考訳): 自然言語学習のための visuospatial dataset
- Authors: Dylan Ebert, Ellie Pavlick
- Abstract要約: 基礎言語モデルのトレーニングと評価のための新しいデータセットを導入する。
我々のデータはバーチャルリアリティー環境で収集され、言語データの品質をエミュレートするように設計されている。
収集したデータを用いて、動詞学習のための複数の分布意味論モデルを比較する。
- 参考スコア(独自算出の注目度): 18.654373173232205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new dataset for training and evaluating grounded language
models. Our data is collected within a virtual reality environment and is
designed to emulate the quality of language data to which a pre-verbal child is
likely to have access: That is, naturalistic, spontaneous speech paired with
richly grounded visuospatial context. We use the collected data to compare
several distributional semantics models for verb learning. We evaluate neural
models based on 2D (pixel) features as well as feature-engineered models based
on 3D (symbolic, spatial) features, and show that neither modeling approach
achieves satisfactory performance. Our results are consistent with evidence
from child language acquisition that emphasizes the difficulty of learning
verbs from naive distributional data. We discuss avenues for future work on
cognitively-inspired grounded language learning, and release our corpus with
the intent of facilitating research on the topic.
- Abstract(参考訳): 基礎言語モデルのトレーニングと評価のための新しいデータセットを導入する。
私たちのデータは仮想現実環境内で収集され、言語前の子供がアクセスしそうな言語データの品質をエミュレートするように設計されています。
収集したデータを用いて,複数の分布セマンティクスモデルを比較し,動詞学習を行う。
我々は,2D(ピクセル)特徴に基づくニューラルモデルと3D(シンボル的,空間的)特徴に基づく特徴工学モデルを評価し,どちらのモデリング手法も良好な性能を達成できないことを示す。
本研究は,ナイーブ分布データから動詞を学習することの難しさを強調する,児童言語習得の証拠と一致している。
我々は,認知的インスパイアされた基礎言語学習の今後の研究への道筋を議論し,その研究を促進する目的でコーパスを開放する。
関連論文リスト
- Is Child-Directed Speech Effective Training Data for Language Models? [34.46268640655943]
GPT-2 と RoBERTa モデルを英語の子供指向音声の29万語で学習する。
子どものトレーニングデータのグローバルな発達順序付けやローカルな談話順序付けが、他のデータセットと比較して高いパフォーマンスを支えているかどうかを検証する。
これらの結果は、より良いデータから進むのではなく、子供の学習アルゴリズムが現在の言語モデリング技術よりもはるかにデータ効率が高いという仮説を支持している。
論文 参考訳(メタデータ) (2024-08-07T08:18:51Z) - Visually Grounded Language Learning: a review of language games,
datasets, tasks, and models [60.2604624857992]
多くのVision+Language (V+L)タスクは、視覚的モダリティでシンボルをグラウンドできるモデルを作成することを目的として定義されている。
本稿では,V+L分野において提案されるいくつかの課題とモデルについて,系統的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-12-05T02:17:29Z) - Transparency at the Source: Evaluating and Interpreting Language Models
With Access to the True Distribution [4.01799362940916]
人工的な言語のようなデータを用いて、ニューラルネットワークモデルのトレーニング、評価、解釈を行う。
データは、巨大な自然言語コーパスから派生した巨大な確率文法を用いて生成される。
基礎となる真の情報源にアクセスすることで、異なる単語のクラス間の動的学習における顕著な違いと結果が示される。
論文 参考訳(メタデータ) (2023-10-23T12:03:01Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - Pretraining on Interactions for Learning Grounded Affordance
Representations [22.290431852705662]
我々はニューラルネットワークを訓練し、シミュレーションされた相互作用において物体の軌道を予測する。
我々のネットワークの潜在表現は、観測された価格と観測されていない価格の両方を区別していることが示される。
提案する手法は,従来の語彙表現の形式的意味概念と統合可能な言語学習の手法である。
論文 参考訳(メタデータ) (2022-07-05T19:19:53Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Neural Variational Learning for Grounded Language Acquisition [14.567067583556714]
本稿では,言語が特定の定義された用語のカテゴリを含まない視覚的知覚に基礎を置いている学習システムを提案する。
この生成手法は,低リソース環境下での視覚的カテゴリを事前に指定することなく,言語接地において有望な結果を示すことを示す。
論文 参考訳(メタデータ) (2021-07-20T20:55:02Z) - VidLanKD: Improving Language Understanding via Video-Distilled Knowledge
Transfer [76.3906723777229]
言語理解を改善するためのビデオ言語知識蒸留法VidLanKDを提案する。
我々は、ビデオテキストデータセット上でマルチモーダル教師モデルを訓練し、その知識をテキストデータセットを用いて学生言語モデルに伝達する。
我々の実験では、VidLanKDはテキストのみの言語モデルや発声モデルよりも一貫した改善を実現している。
論文 参考訳(メタデータ) (2021-07-06T15:41:32Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。