論文の概要: Improving Named Entity Recognition with Attentive Ensemble of Syntactic
Information
- arxiv url: http://arxiv.org/abs/2010.15466v1
- Date: Thu, 29 Oct 2020 10:25:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-10-01 22:53:06.807827
- Title: Improving Named Entity Recognition with Attentive Ensemble of Syntactic
Information
- Title(参考訳): 構文情報の注意アンサンブルによる名前付きエンティティ認識の改善
- Authors: Yuyang Nie, Yuanhe Tian, Yan Song, Xiang Ao, and Xiang Wan
- Abstract要約: 名前付きエンティティ認識(NER)は、セマンティック・セマンティック・セマンティック・プロパティに非常に敏感である。
本稿では,暗黙のアンサンブルによって異なるタイプの構文情報を活用することにより,NERを改善する。
6つの英語と中国語のベンチマークデータセットの実験結果から,提案手法の有効性が示唆された。
- 参考スコア(独自算出の注目度): 36.03316058182617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named entity recognition (NER) is highly sensitive to sentential syntactic
and semantic properties where entities may be extracted according to how they
are used and placed in the running text. To model such properties, one could
rely on existing resources to providing helpful knowledge to the NER task; some
existing studies proved the effectiveness of doing so, and yet are limited in
appropriately leveraging the knowledge such as distinguishing the important
ones for particular context. In this paper, we improve NER by leveraging
different types of syntactic information through attentive ensemble, which
functionalizes by the proposed key-value memory networks, syntax attention, and
the gate mechanism for encoding, weighting and aggregating such syntactic
information, respectively. Experimental results on six English and Chinese
benchmark datasets suggest the effectiveness of the proposed model and show
that it outperforms previous studies on all experiment datasets.
- Abstract(参考訳): 名前付きエンティティ認識(ner)は、センテンシャル構文やセマンティクスプロパティに非常に敏感であり、エンティティは、使用する方法に従って抽出され、実行中のテキストに置かれる。
そのような特性をモデル化するためには、NERタスクに有用な知識を提供するために既存のリソースを頼りにすることができる。
本稿では,提案したキー値メモリネットワーク,構文注意,およびこのような構文情報の符号化,重み付け,集約を行うゲート機構によって機能する,暗黙のアンサンブルを通じて,異なるタイプの構文情報を活用することにより,NERを改善する。
6つの英語と中国語のベンチマークデータセットにおける実験結果から,提案モデルの有効性が示唆された。
関連論文リスト
- Improving Question Embeddings with Cognitiv Representation Optimization for Knowledge Tracing [77.14348157016518]
知識追跡(KT)は,学生の知識状況の変化を追跡し,過去の回答記録に基づいて将来の回答を予測することを目的としている。
KTモデリングに関する最近の研究は、既存の未更新の学習相互作用の記録に基づいて、学生の将来のパフォーマンスを予測することに焦点を当てている。
本稿では、動的プログラミングアルゴリズムを用いて認知表現の構造を最適化する知識追跡モデルのための認知表現最適化を提案する。
論文 参考訳(メタデータ) (2025-04-05T09:32:03Z) - Syntax-Informed Interactive Model for Comprehensive Aspect-Based
Sentiment Analysis [0.0]
総合ABSAのためのシンタクティック・依存性強化マルチタスクインタラクション・アーキテクチャ(SDEMTIA)を提案する。
我々のアプローチは、SDEIN(Syntactic Dependency Embedded Interactive Network)を用いた構文知識(依存関係と型)を革新的に活用する。
また,学習効率を高めるために,マルチタスク学習フレームワークに,新規で効率的なメッセージパッシング機構を組み込んだ。
論文 参考訳(メタデータ) (2023-11-28T16:03:22Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Nested Named Entity Recognition as Holistic Structure Parsing [92.8397338250383]
本研究は,文中の全入れ子NEを全体構造としてモデル化し,全体構造解析アルゴリズムを提案する。
実験により、我々のモデルは、最先端にアプローチしたり、あるいは達成したりするような、広く使われているベンチマークで有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2022-04-17T12:48:20Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NERモデルは標準のNERベンチマークで有望な性能を達成した。
近年の研究では、従来のアプローチはエンティティ参照情報に過度に依存し、OoV(out-of-vocabulary)エンティティ認識の性能が劣っていることが示されている。
我々は、情報理論の観点からこの問題を改善するための新しいNER学習フレームワークであるMINERを提案する。
論文 参考訳(メタデータ) (2022-04-09T05:18:20Z) - KARL-Trans-NER: Knowledge Aware Representation Learning for Named Entity
Recognition using Transformers [0.0]
名前付きエンティティ認識(NER)のための知識認識表現学習(KARL)ネットワークを提案する。
KARLは、ファクトトリプレットとして表される大きな知識ベースを利用し、それらをコンテキストに変換し、内部に存在する必須情報を抽出して、特徴拡張のためのコンテキスト化三重項表現を生成するトランスフォーマーに基づいている。
実験結果から,KARL を用いた拡張は NER システムの性能を大幅に向上させ,既存の 3 つの NER データセット(CoNLL 2003,CoNLL++,OntoNotes v5 など)の文献上のアプローチよりもはるかに優れた結果が得られることが示された。
論文 参考訳(メタデータ) (2021-11-30T14:29:33Z) - Empirical Study of Named Entity Recognition Performance Using
Distribution-aware Word Embedding [15.955385058787348]
そこで我々は,NERフレームワークにおける分散情報を利用するために,分散対応単語埋め込みを開発し,三つの異なる手法を実装した。
単語特異性が既存のNERメソッドに組み込まれれば、NERのパフォーマンスが向上する。
論文 参考訳(メタデータ) (2021-09-03T17:28:04Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
ニューラルリレーション抽出(RE)に関連する言語特性を対象とした14の探索タスクを導入する。
私たちは、40以上の異なるエンコーダアーキテクチャと2つのデータセットでトレーニングされた言語的特徴の組み合わせによって学習された表現を研究するためにそれらを使用します。
アーキテクチャによって引き起こされるバイアスと言語的特徴の含意は、探索タスクのパフォーマンスにおいて明らかに表現されている。
論文 参考訳(メタデータ) (2020-04-17T09:17:40Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。