An Overview Of 3D Object Detection
- URL: http://arxiv.org/abs/2010.15614v1
- Date: Thu, 29 Oct 2020 14:04:50 GMT
- Title: An Overview Of 3D Object Detection
- Authors: Yilin Wang, Jiayi Ye
- Abstract summary: We propose a framework that uses both RGB and point cloud data to perform multiclass object recognition.
We use the recently released nuScenes dataset---a large-scale dataset contains many data formats---to training and evaluate our proposed architecture.
- Score: 21.159668390764832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud 3D object detection has recently received major attention and
becomes an active research topic in 3D computer vision community. However,
recognizing 3D objects in LiDAR (Light Detection and Ranging) is still a
challenge due to the complexity of point clouds. Objects such as pedestrians,
cyclists, or traffic cones are usually represented by quite sparse points,
which makes the detection quite complex using only point cloud. In this
project, we propose a framework that uses both RGB and point cloud data to
perform multiclass object recognition. We use existing 2D detection models to
localize the region of interest (ROI) on the RGB image, followed by a pixel
mapping strategy in the point cloud, and finally, lift the initial 2D bounding
box to 3D space. We use the recently released nuScenes dataset---a large-scale
dataset contains many data formats---to training and evaluate our proposed
architecture.
Related papers
- Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection [85.08249413137558]
LiDAR-produced point clouds are the major source for most state-of-the-art 3D object detectors.
Small, distant, and incomplete objects with sparse or few points are often hard to detect.
We present Sparse2Dense, a new framework to efficiently boost 3D detection performance by learning to densify point clouds in latent space.
arXiv Detail & Related papers (2022-11-23T16:01:06Z) - 4D Unsupervised Object Discovery [53.561750858325915]
We propose 4D unsupervised object discovery, jointly discovering objects from 4D data -- 3D point clouds and 2D RGB images with temporal information.
We present the first practical approach for this task by proposing a ClusterNet on 3D point clouds, which is jointly optimized with a 2D localization network.
arXiv Detail & Related papers (2022-10-10T16:05:53Z) - Bridged Transformer for Vision and Point Cloud 3D Object Detection [92.86856146086316]
Bridged Transformer (BrT) is an end-to-end architecture for 3D object detection.
BrT learns to identify 3D and 2D object bounding boxes from both points and image patches.
We experimentally show that BrT surpasses state-of-the-art methods on SUN RGB-D and ScanNetV2 datasets.
arXiv Detail & Related papers (2022-10-04T05:44:22Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
A point cloud is a dense compilation of spatial data in 3D coordinates.
We propose a PointNet-based approach for 3D Multi-Object Tracking (MOT)
arXiv Detail & Related papers (2021-06-03T05:36:39Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
We propose a novel fusion algorithm by projecting a set of 3D Region of Interests (RoIs) from the point clouds to the 2D RoIs of the corresponding the images.
Our approach achieves state-of-the-art performance on the KITTI 3D object detection challenging benchmark.
arXiv Detail & Related papers (2020-09-09T20:23:27Z) - 3D Object Detection Method Based on YOLO and K-Means for Image and Point
Clouds [1.9458156037869139]
Lidar based 3D object detection and classification tasks are essential for autonomous driving.
This paper proposes a 3D object detection method based on point cloud and image.
arXiv Detail & Related papers (2020-04-21T04:32:36Z) - ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes [93.82668222075128]
We propose a 3D detection architecture called ImVoteNet for RGB-D scenes.
ImVoteNet is based on fusing 2D votes in images and 3D votes in point clouds.
We validate our model on the challenging SUN RGB-D dataset.
arXiv Detail & Related papers (2020-01-29T05:09:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.