4D Unsupervised Object Discovery
- URL: http://arxiv.org/abs/2210.04801v1
- Date: Mon, 10 Oct 2022 16:05:53 GMT
- Title: 4D Unsupervised Object Discovery
- Authors: Yuqi Wang, Yuntao Chen, Zhaoxiang Zhang
- Abstract summary: We propose 4D unsupervised object discovery, jointly discovering objects from 4D data -- 3D point clouds and 2D RGB images with temporal information.
We present the first practical approach for this task by proposing a ClusterNet on 3D point clouds, which is jointly optimized with a 2D localization network.
- Score: 53.561750858325915
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Object discovery is a core task in computer vision. While fast progresses
have been made in supervised object detection, its unsupervised counterpart
remains largely unexplored. With the growth of data volume, the expensive cost
of annotations is the major limitation hindering further study. Therefore,
discovering objects without annotations has great significance. However, this
task seems impractical on still-image or point cloud alone due to the lack of
discriminative information. Previous studies underlook the crucial temporal
information and constraints naturally behind multi-modal inputs. In this paper,
we propose 4D unsupervised object discovery, jointly discovering objects from
4D data -- 3D point clouds and 2D RGB images with temporal information. We
present the first practical approach for this task by proposing a ClusterNet on
3D point clouds, which is jointly iteratively optimized with a 2D localization
network. Extensive experiments on the large-scale Waymo Open Dataset suggest
that the localization network and ClusterNet achieve competitive performance on
both class-agnostic 2D object detection and 3D instance segmentation, bridging
the gap between unsupervised methods and full supervised ones. Codes and models
will be made available at https://github.com/Robertwyq/LSMOL.
Related papers
- HEDNet: A Hierarchical Encoder-Decoder Network for 3D Object Detection
in Point Clouds [19.1921315424192]
3D object detection in point clouds is important for autonomous driving systems.
A primary challenge in 3D object detection stems from the sparse distribution of points within the 3D scene.
We propose HEDNet, a hierarchical encoder-decoder network for 3D object detection.
arXiv Detail & Related papers (2023-10-31T07:32:08Z) - DetZero: Rethinking Offboard 3D Object Detection with Long-term
Sequential Point Clouds [55.755450273390004]
Existing offboard 3D detectors always follow a modular pipeline design to take advantage of unlimited sequential point clouds.
We have found that the full potential of offboard 3D detectors is not explored mainly due to two reasons: (1) the onboard multi-object tracker cannot generate sufficient complete object trajectories, and (2) the motion state of objects poses an inevitable challenge for the object-centric refining stage.
To tackle these problems, we propose a novel paradigm of offboard 3D object detection, named DetZero.
arXiv Detail & Related papers (2023-06-09T16:42:00Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
This paper aims for high-performance offline LiDAR-based 3D object detection.
We first observe that experienced human annotators annotate objects from a track-centric perspective.
We propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective.
arXiv Detail & Related papers (2023-04-24T17:59:05Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Unsupervised Object Detection with LiDAR Clues [70.73881791310495]
We present the first practical method for unsupervised object detection with the aid of LiDAR clues.
In our approach, candidate object segments based on 3D point clouds are firstly generated.
Then, an iterative segment labeling process is conducted to assign segment labels and to train a segment labeling network.
The labeling process is carefully designed so as to mitigate the issue of long-tailed and open-ended distribution.
arXiv Detail & Related papers (2020-11-25T18:59:54Z) - Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking
from View Aggregation [8.854112907350624]
3D multi-object tracking plays a vital role in autonomous navigation.
Many approaches detect objects in 2D RGB sequences for tracking, which is lack of reliability when localizing objects in 3D space.
We propose a novel convolutional operation, named RelationConv, to better exploit the correlation between each pair of objects in the adjacent frames.
arXiv Detail & Related papers (2020-11-25T16:14:40Z) - An Overview Of 3D Object Detection [21.159668390764832]
We propose a framework that uses both RGB and point cloud data to perform multiclass object recognition.
We use the recently released nuScenes dataset---a large-scale dataset contains many data formats---to training and evaluate our proposed architecture.
arXiv Detail & Related papers (2020-10-29T14:04:50Z) - Weakly Supervised 3D Object Detection from Point Clouds [27.70180601788613]
3D object detection aims to detect and localize the 3D bounding boxes of objects belonging to specific classes.
Existing 3D object detectors rely on annotated 3D bounding boxes during training, while these annotations could be expensive to obtain and only accessible in limited scenarios.
We propose VS3D, a framework for weakly supervised 3D object detection from point clouds without using any ground truth 3D bounding box for training.
arXiv Detail & Related papers (2020-07-28T03:30:11Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.