Observation of a new interaction between a single spin and a moving mass
- URL: http://arxiv.org/abs/2010.15667v2
- Date: Sun, 8 Nov 2020 14:38:04 GMT
- Title: Observation of a new interaction between a single spin and a moving mass
- Authors: Xing Rong, Man Jiao, Maosen Guo, Diguang Wu and Jiangfeng Du
- Abstract summary: We explore the spin-dependent interactions mediated by the axion-like particles, which are well motivated by dark matter candidates.
We recorded non-zero magnetic fields exerted on the single electron spin from a moving mass.
Our results provide highly suggestive of the existence of a new spin-dependent interaction.
- Score: 6.887744934296352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Searching for physics beyond the standard model is crucial for understanding
the mystery of the universe, such as the dark matter. We utilized a single spin
in a diamond as a sensor to explore the spin-dependent interactions mediated by
the axion-like particles, which are well motivated by dark matter candidates.
We recorded non-zero magnetic fields exerted on the single electron spin from a
moving mass. The strength of the magnetic field is proportional to the velocity
of the moving mass. The dependency of the magnetic field on the distance
between the spin and the moving mass has been experimentally characterized. We
analyzed the possible sources of this magnetic signal, and our results provide
highly suggestive of the existence of a new spin-dependent interaction. Our
work opens a door for investigating the physics beyond the standard model in
laboratory.
Related papers
- Spin Vector Potential and Spin Aharonov-Bohm Effect [0.0]
The Aharonov-Bohm (AB) effect serves as a surprising quantum phenomenon in which an electrically charged particle can be affected by an electromagnetic potential.
A certain vector potential is crucial for building a certain type of AB effect.
arXiv Detail & Related papers (2022-11-14T08:15:27Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Spin-1/2 particles under the influence of a uniform magnetic field in
the interior Schwarzschild solution [62.997667081978825]
relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained.
Results are relevant to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense.
arXiv Detail & Related papers (2021-11-30T14:46:00Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Towards a quantum interface between spin waves and paramagnetic spin
baths [0.0]
We present a quantum theory describing the interaction between spin waves and paramagnetic spins.
We consider an ensemble of nitrogen-vacancy spins in diamond in the vicinity of an Yttrium-Iron-Garnet thin film.
We show how the back-action of the ensemble results in strong and tuneable modifications of the spin-wave spectrum and propagation properties.
arXiv Detail & Related papers (2020-12-01T14:54:43Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Coupling a mobile hole to an antiferromagnetic spin background:
Transient dynamics of a magnetic polaron [0.0]
In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons.
Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background.
Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
arXiv Detail & Related papers (2020-06-11T17:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.