Towards a quantum interface between spin waves and paramagnetic spin
baths
- URL: http://arxiv.org/abs/2012.00540v1
- Date: Tue, 1 Dec 2020 14:54:43 GMT
- Title: Towards a quantum interface between spin waves and paramagnetic spin
baths
- Authors: C. Gonzalez-Ballestero, T. van der Sar, O. Romero-Isart
- Abstract summary: We present a quantum theory describing the interaction between spin waves and paramagnetic spins.
We consider an ensemble of nitrogen-vacancy spins in diamond in the vicinity of an Yttrium-Iron-Garnet thin film.
We show how the back-action of the ensemble results in strong and tuneable modifications of the spin-wave spectrum and propagation properties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin waves have risen as promising candidate information carriers for the
next generation of information technologies. Recent experimental demonstrations
of their detection using electron spins in diamond pave the way towards
studying the back-action of a controllable paramagnetic spin bath on the spin
waves. Here, we present a quantum theory describing the interaction between
spin waves and paramagnetic spins. As a case study we consider an ensemble of
nitrogen-vacancy spins in diamond in the vicinity of an Yttrium-Iron-Garnet
thin film. We show how the back-action of the ensemble results in strong and
tuneable modifications of the spin-wave spectrum and propagation properties.
These modifications include the full suppression of spin-wave propagation and,
in a different parameter regime, the enhancement of their propagation length by
$\sim 50\%$. Furthermore, we show how the spin wave thermal fluctuations induce
a measurable frequency shift of the paramagnetic spins in the bath. This shift
results in a thermal dispersion force that can be measured optically and/or
mechanically with a diamond mechanical resonator. In addition, we use our
theory to compute the spin wave-mediated interaction between the spins in the
bath. We show that all the above effects are measurable by state-of-the-art
experiments. Our results provide the theoretical foundation for describing
hybrid quantum systems of spin waves and spin baths, and establish the
potential of quantum spins as active control, sensing, and interfacing tools
for spintronics.
Related papers
- Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Longitudinal coupling between electrically driven spin-qubits and a resonator [0.0]
We study spin qubits confined in quantum dots at zero magnetic fields that are driven periodically by electrical fields and are coupled to a microwave resonator.
We find both transverse and longitudinal couplings between the Floquet spin qubit and the resonator, which can be selectively activated by modifying the driving frequency.
arXiv Detail & Related papers (2023-01-24T17:42:41Z) - Tunable itinerant spin dynamics with polar molecules [2.830197032154302]
Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field.
Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics.
arXiv Detail & Related papers (2022-08-03T16:57:36Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Driven dynamics of a quantum dot electron spin coupled to bath of
higher-spin nuclei [0.0]
We study the interplay of optical driving and hyperfine interaction between an electron confined in a quantum dot and its surrounding nuclear spin environment.
We find that while hyperfine interactions drive dynamic nuclear polarization and mode-locking, quadrupolar couplings counteract these effects.
arXiv Detail & Related papers (2020-12-14T03:00:18Z) - Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system [0.0]
Nuclear spins show long coherence times and are well isolated from the environment.
We present a method for nuclear spin readout by probing the transmission of a microwave resonator.
arXiv Detail & Related papers (2020-12-02T16:51:50Z) - Strong spin-orbit interaction and $g$-factor renormalization of hole
spins in Ge/Si nanowire quantum dots [0.0]
Hole spins in Ge/Si core/shell nanowires experience a spin-orbit interaction that has been predicted to be both strong and electrically tunable.
We experimentally determine the strength of spin-orbit interaction of hole spins confined to a double quantum dot in a Ge/Si nanowire.
arXiv Detail & Related papers (2020-07-08T17:54:49Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.