論文の概要: Understanding the Failure Modes of Out-of-Distribution Generalization
- arxiv url: http://arxiv.org/abs/2010.15775v3
- Date: Fri, 6 Sep 2024 22:45:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 00:23:12.396692
- Title: Understanding the Failure Modes of Out-of-Distribution Generalization
- Title(参考訳): アウト・オブ・ディストリビューションの一般化の失敗モードを理解する
- Authors: Vaishnavh Nagarajan, Anders Andreassen, Behnam Neyshabur,
- Abstract要約: 経験的研究は、機械学習モデルは、トレーニング時間にのみラベルと急激な相関関係を持つ可能性のある背景のような特徴にしばしば依存していることを示唆している。
本研究は,学習が容易なタスクにおいても,モデルがこのように失敗する理由を説明することによって,この行動を引き起こす基本的な要因を同定する。
- 参考スコア(独自算出の注目度): 35.00563456450452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empirical studies suggest that machine learning models often rely on features, such as the background, that may be spuriously correlated with the label only during training time, resulting in poor accuracy during test-time. In this work, we identify the fundamental factors that give rise to this behavior, by explaining why models fail this way {\em even} in easy-to-learn tasks where one would expect these models to succeed. In particular, through a theoretical study of gradient-descent-trained linear classifiers on some easy-to-learn tasks, we uncover two complementary failure modes. These modes arise from how spurious correlations induce two kinds of skews in the data: one geometric in nature, and another, statistical in nature. Finally, we construct natural modifications of image classification datasets to understand when these failure modes can arise in practice. We also design experiments to isolate the two failure modes when training modern neural networks on these datasets.
- Abstract(参考訳): 経験的な研究によると、機械学習モデルは、背景のような特徴に依存しており、トレーニング時間にのみラベルと急激な相関関係があり、テスト時間中に精度が低下する可能性がある。
本研究では、これらのモデルが成功することを期待する簡単なタスクにおいて、なぜモデルがこのように失敗するのかを説明することによって、この振る舞いを引き起こす基本的な要因を特定する。
特に、グラデーション・ディフレッシュ・トレーニングされた線形分類器のいくつかの簡単な学習課題に関する理論的研究により、2つの相補的故障モードが明らかになった。
これらのモードは、スプリアス相関がデータの中で2種類のスキューを誘発する方法から生じる。
最後に、画像分類データセットの自然な修正を行い、これらの障害モードが実際にいつ発生するかを理解する。
また、これらのデータセット上でモダンニューラルネットワークをトレーニングする際の2つの障害モードを分離する実験も設計する。
関連論文リスト
- Repairing Neural Networks by Leaving the Right Past Behind [23.78437548836594]
機械学習モデルの予測失敗は、トレーニングデータの欠陥から生じることが多い。
この研究は、目標とする障害を発生させたトレーニング例を特定し、それらに関する情報を消去することでモデルを修正するための一般的なフレームワークを開発する。
論文 参考訳(メタデータ) (2022-07-11T12:07:39Z) - Certifying Data-Bias Robustness in Linear Regression [12.00314910031517]
本稿では, 線形回帰モデルが学習データセットのラベルバイアスに対して, ポイントワイズで損なわれているかどうかを検証する手法を提案する。
この問題を個々のテストポイントに対して正確に解く方法を示し、近似的だがよりスケーラブルな方法を提供する。
また、いくつかのデータセット上の特定のバイアス仮定に対して、高いレベルの非腐食性など、バイアス-腐食性のギャップを掘り下げる。
論文 参考訳(メタデータ) (2022-06-07T20:47:07Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
一般化誤差の「二重降下」現象について検討する。
二重降下は、異なるスケールで学習される異なる特徴に起因する可能性がある。
論文 参考訳(メタデータ) (2021-12-06T18:17:08Z) - Capturing the learning curves of generic features maps for realistic
data sets with a teacher-student model [24.679669970832396]
教師学生モデルは、高次元教師付き学習タスクの典型的なケースパフォーマンスをクローズドな形で研究できる強力なフレームワークを提供する。
この設定では、ラベルはデータに割り当てられ、しばしばガウスのi.i.dとされる。
-教師モデルにより、ラベルを生成するパラメータの復元において、学生モデルの典型的な性能を特徴付けることが目的である。
論文 参考訳(メタデータ) (2021-02-16T12:49:15Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep
Learning [29.473503894240096]
我々は、厳密な分類ではなく、単純な表現の値を取るデータにカテゴリ横断エントロピー損失を用いることに焦点をあてる。
このプラクティスは、ラベルの平滑化やアクター/ミリ波強化学習など、ニューラルネットワークアーキテクチャにおいて標準的なものだ。
我々はこれらのモデルに対して確率論的に着想を得た代替案を提案し、より原理的で理論的に魅力的であるアプローチを提供する。
論文 参考訳(メタデータ) (2020-11-10T16:44:35Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。