論文の概要: A Framework for Learning Predator-prey Agents from Simulation to Real
World
- arxiv url: http://arxiv.org/abs/2010.15792v1
- Date: Thu, 29 Oct 2020 17:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 23:28:28.953633
- Title: A Framework for Learning Predator-prey Agents from Simulation to Real
World
- Title(参考訳): シミュレーションから実世界への捕食者・捕食者エージェントの学習フレームワーク
- Authors: Jiunhan Chen, Zhenyu Gao
- Abstract要約: 本研究では,シミュレーションから実世界への展開が可能な進化型捕食ロボットシステムを提案する。
捕食者と獲物は共に、期待される行動を学ぶために、NeuroEvolution of Augmenting Topologies (NEAT)によって進化する。
ユーザの利便性のために、シミュレートされた実世界のソースコードとビデオがGithubで公開されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an evolutionary predatorprey robot system which can
be generally implemented from simulation to the real world. We design the
closed-loop robot system with camera and infrared sensors as inputs of
controller. Both the predators and prey are co-evolved by NeuroEvolution of
Augmenting Topologies (NEAT) to learn the expected behaviours. We design a
framework that integrate Gym of OpenAI, Robot Operating System (ROS), Gazebo.
In such a framework, users only need to focus on algorithms without being
worried about the detail of manipulating robots in both simulation and the real
world. Combining simulations, real-world evolution, and robustness analysis, it
can be applied to develop the solutions for the predator-prey tasks. For the
convenience of users, the source code and videos of the simulated and real
world are published on Github.
- Abstract(参考訳): 本稿では,シミュレーションから実世界へ一般に実装可能な進化的捕食者獲物ロボットシステムを提案する。
カメラと赤外線センサをコントローラの入力として搭載したクローズドループロボットシステムを設計する。
捕食者と獲物は共に、期待される行動を学ぶために、NeuroEvolution of Augmenting Topologies (NEAT)によって進化する。
我々は,OpenAIのGym,Robot Operating System(ROS),Gazeboを統合したフレームワークを設計する。
このようなフレームワークでは、ユーザーはシミュレーションと現実世界の両方でロボットを操作する詳細を気にすることなく、アルゴリズムに焦点を当てる必要がある。
シミュレーション、実世界進化、ロバストネス分析を組み合わせることで、捕食者-捕食者のタスクの解決策を開発することができる。
ユーザのために、シミュレーションされた現実世界のソースコードとビデオがgithubで公開されている。
関連論文リスト
- GRUtopia: Dream General Robots in a City at Scale [65.08318324604116]
本稿では,各種ロボットを対象とした対話型3D社会「GRUtopia」について紹介する。
GRScenesには100万のインタラクティブな微妙な注釈付きシーンが含まれており、都市規模の環境に自由に組み合わせることができる。
GRResidentsはLarge Language Model (LLM)によって駆動されるNon-Player Character (NPC)システムである。
論文 参考訳(メタデータ) (2024-07-15T17:40:46Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - An Architecture for Unattended Containerized (Deep) Reinforcement
Learning with Webots [0.0]
3Dの世界におけるエージェントによる強化学習は、依然として課題に直面している。
シミュレーションソフトウェアの使用に必要な知識と、意図しないトレーニングパイプラインにおけるスタンドアロンのシミュレーションソフトウェアの利用。
論文 参考訳(メタデータ) (2024-02-06T12:08:01Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
実世界におけるヒューマノイド移動に対する完全学習型アプローチを提案する。
コントローラーは様々な屋外の地形の上を歩けるし、外乱に対して頑丈で、状況に応じて適応できる。
論文 参考訳(メタデータ) (2023-03-06T18:59:09Z) - ROS-PyBullet Interface: A Framework for Reliable Contact Simulation and
Human-Robot Interaction [17.093672006793984]
信頼性の高いコンタクト/インパクトシミュレータPyBulletとロボットオペレーティングシステム(ROS)のブリッジを提供するフレームワークであるROS-PyBullet Interfaceを提案する。
さらに,シミュレーション環境でのヒューマン・ロボット・インタラクション(HRI)を促進するために,新たなユーティリティを提供する。
論文 参考訳(メタデータ) (2022-10-13T10:31:36Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
上記の4つの要件を満たすために,SAGCIシステムと呼ばれる体系的な学習フレームワークを導入する。
本システムはまず,ロボットの手首に搭載されたカメラによって収集された生点雲を入力とし,URDFに代表される周囲環境の初期モデリングを生成する。
そのロボットは、対話的な知覚を利用して環境と対話し、URDFのオンライン検証と修正を行う。
論文 参考訳(メタデータ) (2021-11-29T16:53:49Z) - A toolbox for neuromorphic sensing in robotics [4.157415305926584]
ロボット上で利用可能なあらゆる種類のセンサからの入力信号をエンコードし、デコードするためのROS(Robot Operating System)ツールボックスを導入する。
このイニシアチブは、ニューロモルフィックAIのロボット統合を刺激し促進することを目的としている。
論文 参考訳(メタデータ) (2021-03-03T23:22:05Z) - robo-gym -- An Open Source Toolkit for Distributed Deep Reinforcement
Learning on Real and Simulated Robots [0.5161531917413708]
本稿では,ロボットによる深層強化学習を向上するためのオープンソースのツールキット,robo-gymを提案する。
シミュレーションにおけるトレーニングからロボットへのシームレスな移動を可能にするシミュレーション環境と実環境の統一的なセットアップを実証する。
産業用ロボットを特徴とする2つの実世界アプリケーションを用いて,本フレームワークの能力と有効性を示す。
論文 参考訳(メタデータ) (2020-07-06T13:51:33Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
インタラクティブで具体化された視覚AIの研究を民主化するためにRoboTHORを導入する。
シミュレーションで訓練されたモデルの性能は,シミュレーションと慎重に構築された物理アナログの両方で試験される場合,大きな差があることが示される。
論文 参考訳(メタデータ) (2020-04-14T20:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。