論文の概要: Graph Neural Network for Metal Organic Framework Potential Energy
Approximation
- arxiv url: http://arxiv.org/abs/2010.15908v1
- Date: Thu, 29 Oct 2020 19:47:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 23:45:37.099329
- Title: Graph Neural Network for Metal Organic Framework Potential Energy
Approximation
- Title(参考訳): 金属有機フレームワークポテンシャルエネルギー近似のためのグラフニューラルネットワーク
- Authors: Shehtab Zaman, Christopher Owen, Kenneth Chiu, Michael Lawler
- Abstract要約: 金属-有機フレームワーク(英: Metal-organic framework、MOF)は、金属イオンと有機リンカーからなるナノ多孔質化合物である。
グラフニューラルネットワークを用いて候補MOFのポテンシャルエネルギーを推定する機械学習手法を提案する。
DFTを用いて、5万の空間構成と高品質なポテンシャルエネルギー値のデータベースを生成する。
- 参考スコア(独自算出の注目度): 0.4588028371034407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal
ions and organic linkers. MOFs play an important role in industrial
applications such as gas separation, gas purification, and electrolytic
catalysis. Important MOF properties such as potential energy are currently
computed via techniques such as density functional theory (DFT). Although DFT
provides accurate results, it is computationally costly. We propose a machine
learning approach for estimating the potential energy of candidate MOFs,
decomposing it into separate pair-wise atomic interactions using a graph neural
network. Such a technique will allow high-throughput screening of candidates
MOFs. We also generate a database of 50,000 spatial configurations and
high-quality potential energy values using DFT.
- Abstract(参考訳): 金属-有機フレームワーク (MOF) は金属イオンと有機リンカーからなるナノ多孔質化合物である。
mofは、ガス分離、ガス浄化、電解触媒などの産業用途において重要な役割を果たす。
ポテンシャルエネルギーのような重要なMOF特性は、現在密度汎関数理論(DFT)のような技術によって計算されている。
DFTは正確な結果を提供するが、計算コストが高い。
本稿では,候補MOFのポテンシャルエネルギーを推定し,グラフニューラルネットワークを用いて2対の原子間相互作用に分解する機械学習手法を提案する。
このような手法により、候補MOFの高スループットスクリーニングが可能になる。
また、DFTを用いて、5万の空間構成と高品質なポテンシャルエネルギー値のデータベースを生成する。
関連論文リスト
- Constructing accurate machine-learned potentials and performing highly efficient atomistic simulations to predict structural and thermal properties [6.875235178607604]
Ab initio molecular dynamics (AIMD) シミュレーションから生成されたデータセットに基づいて学習した神経進化電位(NEP)を導入する。
両方の機械学習ポテンシャルを用いて、状態(DOS)と放射分布関数(RDF)のフォノン密度を計算する。
MTP電位はわずかに精度が良いが、NEPは計算速度が41倍に向上する。
論文 参考訳(メタデータ) (2024-11-16T23:16:59Z) - Energy Transformer [64.22957136952725]
我々の研究は、機械学習における有望な3つのパラダイム、すなわち注意機構、エネルギーベースモデル、連想記憶の側面を組み合わせる。
本稿では,エネルギー変換器(ET,Energy Transformer)と呼ばれる新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-14T18:51:22Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Learned Force Fields Are Ready For Ground State Catalyst Discovery [60.41853574951094]
学習密度汎関数理論(DFT'')力場が基底触媒発見の準備ができていることを示す。
鍵となる発見は、学習されたポテンシャルからの力による緩和は、評価されたシステムの50%以上においてRPBE関数を用いて緩和された構造と似た、または低いエネルギーを持つ構造をもたらすことである。
対象のDFTエネルギーと同じ最小値の局所調和エネルギー表面上で訓練された力場は、50%以上のケースで低又は類似のエネルギー構造を見出すことができることを示す。
論文 参考訳(メタデータ) (2022-09-26T07:16:43Z) - NeuralNEB -- Neural Networks can find Reaction Paths Fast [7.7365628406567675]
密度汎関数理論 (DFT) のような量子力学的手法は、反応系の運動学を研究するための効率的な探索アルゴリズムと共に大きな成功を収めている。
機械学習(ML)モデルは、小さな分子DFT計算の優れたエミュレータであることが判明し、そのようなタスクでDFTを置き換える可能性がある。
本稿では、Transition1xデータセットから約10万の初等反応に基づいて、アート同変グラフニューラルネットワーク(GNN)に基づくモデルの状態を訓練する。
論文 参考訳(メタデータ) (2022-07-20T15:29:45Z) - Building Open Knowledge Graph for Metal-Organic Frameworks (MOF-KG):
Challenges and Case Studies [63.61566811532431]
金属有機フレームワーク(MOF)は、ガス貯蔵、分子分離、化学センシング、結晶および薬物のデリバリーといった応用に革命をもたらす大きな可能性を持っている。
ケンブリッジ構造データベース(CSD)は10,636個のMOF結晶を報告しており、これには114,373個のMOF構造が含まれる。
本稿では,MOF予測,発見,合成を容易にする知識グラフ手法の活用に向けた取り組みについて述べる。
論文 参考訳(メタデータ) (2022-07-10T16:41:11Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
物理や機械学習に基づく反応力場は、時間と長さのスケールのギャップを埋めるために使うことができる。
本稿では,原子周囲の電子密度の物理的に関連する多極展開を利用するガウス多極(GMP)デデュール化スキームを紹介する。
我々は,GMPに基づくモデルがQM9データセットの化学的精度を達成できることを示し,新しい要素を外挿してもその精度は妥当であることを示した。
論文 参考訳(メタデータ) (2021-02-04T03:11:00Z) - Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
Deep Neural Networks [2.7035666571881856]
本稿では,コーン・シャム密度汎関数理論(DFT)による全エネルギーを有限電子温度で再現する機械学習(ML)に基づく数値モデリングワークフローを提案する。
ディープニューラルネットワークに基づいて、ワークフローは与えられた原子構成に対する状態の局所密度(LDOS)を生成する。
本研究では, 固体および液体金属に対するこのアプローチの有効性を実証し, 固体および液体アルミニウムの独立学習モデルと統一学習モデルの比較を行った。
論文 参考訳(メタデータ) (2020-10-10T05:38:03Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。