論文の概要: Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems
- arxiv url: http://arxiv.org/abs/2504.06087v1
- Date: Tue, 08 Apr 2025 14:28:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:28:08.869439
- Title: Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems
- Title(参考訳): 大規模電子構造問題に対する高精度Ab-initioニューラルネットソリューション
- Authors: Michael Scherbela, Nicholas Gao, Philipp Grohs, Stephan Günnemann,
- Abstract要約: 有限範囲埋め込み(FiRE)を高精度なアブ・イニシアチブ電子構造計算に応用する。
FiREは、ニューラルネットワークの変異モンテカルロ(NN-VMC)の複雑さを$sim ntextel$, the number of electronsによって低減する。
バイオケミカル化合物や有機金属化合物など,様々な課題に対して,本手法の精度を検証した。
- 参考スコア(独自算出の注目度): 52.19558333652367
- License:
- Abstract: We present finite-range embeddings (FiRE), a novel wave function ansatz for accurate large-scale ab-initio electronic structure calculations. Compared to contemporary neural-network wave functions, FiRE reduces the asymptotic complexity of neural-network variational Monte Carlo (NN-VMC) by $\sim n_\text{el}$, the number of electrons. By restricting electron-electron interactions within the neural network, FiRE accelerates all key operations -- sampling, pseudopotentials, and Laplacian computations -- resulting in a real-world $10\times$ acceleration in now-feasible 180-electron calculations. We validate our method's accuracy on various challenging systems, including biochemical compounds, conjugated hydrocarbons, and organometallic compounds. On these systems, FiRE's energies are consistently within chemical accuracy of the most reliable data, including experiments, even in cases where high-accuracy methods such as CCSD(T), AFQMC, or contemporary NN-VMC fall short. With these improvements in both runtime and accuracy, FiRE represents a new `gold-standard' method for fast and accurate large-scale ab-initio calculations, potentially enabling new computational studies in fields like quantum chemistry, solid-state physics, and material design.
- Abstract(参考訳): 有限範囲埋め込み (FiRE) は, 高精度なアブ・イニシアト電子構造計算のための新しい波動関数アンサッツである。
現代のニューラル・ネットワーク波動関数と比較して、FiREはニューラル・ネットワーク変動型モンテカルロ(NN-VMC)の漸近複雑性を$\sim n_\text{el}$で減少させる。
ニューラルネットワーク内の電子-電子相互作用を制限することで、FiREはサンプリング、擬ポテンシャル、ラプラシアン計算といったすべてのキー操作を加速する。
本手法の精度は, 生化学化合物, 共役炭化水素, 有機金属化合物など様々な課題に対して検証した。
これらのシステムでは、FiREのエネルギーは、CCSD(T)、AFQMC、現代のNN-VMCのような高精度な手法が不足している場合でも、実験を含む最も信頼性の高いデータの化学的精度において一貫して存在する。
これらのランタイムと精度の改善により、FiREは高速で正確な大規模アブ・イニシアト計算のための新しい「ゴールドスタンダード」法を示し、量子化学、固体物理学、材料設計などの分野における新しい計算研究を可能にする可能性がある。
関連論文リスト
- NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
近年、量子コンピューティングの分野は大幅に成熟している。
NN-AE-VQEというニューラルネットワークを用いた自動符号化VQEを提案する。
我々はこれらの手法を、化学的精度を達成するために、$H$分子上で実証する。
論文 参考訳(メタデータ) (2024-11-23T23:09:22Z) - Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
物理インフォームドニューラルネットワーク(PINN)は、機械学習の迅速かつ自動化された能力と、理論物理学に根ざしたシミュレーションの精度と信頼性を融合して、影響力のある技術として登場した。
しかし、PINNの広範な採用は信頼性の問題、特に入力パラメータ範囲の極端ではまだ妨げられている。
ドメイン知識に基づくPINNアーキテクチャの変更を提案する。
論文 参考訳(メタデータ) (2024-11-15T08:55:31Z) - Machine learning Hubbard parameters with equivariant neural networks [0.0]
等変ニューラルネットワークに基づく機械学習モデルを提案する。
ここでは,繰り返し線形応答計算を用いて自己整合的に計算したハバードパラメータの予測を行う。
本モデルでは,Hubbard $U$および$V$パラメータの平均絶対相対誤差を平均3%,5%とする。
論文 参考訳(メタデータ) (2024-06-04T16:21:24Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に取り組む。
論文 参考訳(メタデータ) (2024-05-23T16:30:51Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - A Self-Attention Ansatz for Ab-initio Quantum Chemistry [3.4161707164978137]
本稿では、自己注意型ウェーブファンクショントランス(Psiformer)を用いたニューラルネットワークアーキテクチャを提案する。
我々は、Psiformerを他のニューラルネットワークのドロップイン代替として使用することができ、計算精度を劇的に向上させることができることを示した。
これは、自己アテンションネットワークが電子間の複雑な量子力学的相関を学習できることを示し、より大きな系の化学計算において前例のない精度に達するための有望な経路であることを示している。
論文 参考訳(メタデータ) (2022-11-24T15:38:55Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。