論文の概要: CliniQG4QA: Generating Diverse Questions for Domain Adaptation of
Clinical Question Answering
- arxiv url: http://arxiv.org/abs/2010.16021v3
- Date: Sat, 11 Dec 2021 15:01:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 16:45:25.618545
- Title: CliniQG4QA: Generating Diverse Questions for Domain Adaptation of
Clinical Question Answering
- Title(参考訳): cliniqg4qa: 臨床質問応答のドメイン適応のための多様な質問の生成
- Authors: Xiang Yue and Xinliang Frederick Zhang and Ziyu Yao and Simon Lin and
Huan Sun
- Abstract要約: 臨床質問応答(英: Clinical Question answering, QA)は、臨床テキストに基づく医療専門家の質問に自動的に答えることを目的としている。
CliniQG4QAを提案する。これは質問生成(QG)を利用して、新しい臨床状況に基づいてQAペアを合成する。
QAモデルのトレーニングに不可欠な多様な質問を生成するために,Seq2seqベースの質問句予測(QPP)モジュールを導入する。
- 参考スコア(独自算出の注目度): 27.45623324582005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical question answering (QA) aims to automatically answer questions from
medical professionals based on clinical texts. Studies show that neural QA
models trained on one corpus may not generalize well to new clinical texts from
a different institute or a different patient group, where large-scale QA pairs
are not readily available for model retraining. To address this challenge, we
propose a simple yet effective framework, CliniQG4QA, which leverages question
generation (QG) to synthesize QA pairs on new clinical contexts and boosts QA
models without requiring manual annotations. In order to generate diverse types
of questions that are essential for training QA models, we further introduce a
seq2seq-based question phrase prediction (QPP) module that can be used together
with most existing QG models to diversify the generation. Our comprehensive
experiment results show that the QA corpus generated by our framework can
improve QA models on the new contexts (up to 8% absolute gain in terms of Exact
Match), and that the QPP module plays a crucial role in achieving the gain.
- Abstract(参考訳): clinical question answering (qa) は、臨床テキストに基づいて、医療専門家からの質問に自動的に答えることを目的としている。
研究によると、あるコーパスでトレーニングされた神経質QAモデルは、異なる機関や別の患者グループからの新しい臨床テキストにうまく一般化できない可能性がある。
この課題に対処するために,質問生成(QG)を活用して新たな臨床状況でQAペアを合成し,手動のアノテーションを必要とせずにQAモデルを向上する,シンプルで効果的なフレームワークであるCliniQG4QAを提案する。
さらに,QAモデルの学習に不可欠な多様な質問を生成するために,既存のQGモデルと併用して生成を多様化する,Seq2seqベースの質問句予測(QPP)モジュールを導入する。
総合実験の結果,我々のフレームワークが生成するqaコーパスは,新たなコンテキストにおけるqaモデル(最大8%の絶対利得)を改善し,qppモジュールが利得を達成する上で重要な役割を担っていることが示された。
関連論文リスト
- XAIQA: Explainer-Based Data Augmentation for Extractive Question
Answering [1.1867812760085572]
我々は,電子カルテで自然に利用可能なデータから,合成QAペアを大規模に生成するための新しいアプローチであるXAIQAを紹介する。
本手法は、分類モデル説明器の考え方を用いて、医療規範に対応する医療概念に関する質問や回答を生成する。
論文 参考訳(メタデータ) (2023-12-06T15:59:06Z) - QADYNAMICS: Training Dynamics-Driven Synthetic QA Diagnostic for
Zero-Shot Commonsense Question Answering [48.25449258017601]
State-of-the-artはCommonSense Knowledge Basesから構築されたQAペア上での微調整言語モデルにアプローチする。
本稿では,QA診断と改善のためのトレーニング動的フレームワークQADYNAMICSを提案する。
論文 参考訳(メタデータ) (2023-10-17T14:27:34Z) - Using Weak Supervision and Data Augmentation in Question Answering [0.12499537119440242]
新型コロナウイルス(COVID-19)のパンデミックの始まりは、タイムリーで病気固有の質問に答えるために、バイオメディカル文献へのアクセスの必要性を強調した。
我々は、深層ニューラルネットワークQAモデルのトレーニングにおいて、弱い監視とデータ拡張が果たす役割について検討する。
システムの中核部におけるQAモデルのコンテキストにおける手法の評価を行い、COVID-19に関する質問に答える。
論文 参考訳(メタデータ) (2023-09-28T05:16:51Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z) - Closed-book Question Generation via Contrastive Learning [20.644215991166895]
コントラスト学習モジュールと回答再構成モジュールを併用した新しいQGモデルを提案する。
提案手法を応用して,既存のクローズドブックQAシステムを改善する方法について述べる。
論文 参考訳(メタデータ) (2022-10-13T06:45:46Z) - ProQA: Structural Prompt-based Pre-training for Unified Question
Answering [84.59636806421204]
ProQAは統一されたQAパラダイムであり、単一のモデルによって様々なタスクを解決する。
全てのQAタスクの知識一般化を同時にモデル化し、特定のQAタスクの知識カスタマイズを維持します。
ProQAは、フルデータの微調整、数ショットの学習、ゼロショットテストシナリオの両方のパフォーマンスを一貫して向上させる。
論文 参考訳(メタデータ) (2022-05-09T04:59:26Z) - How to Build Robust FAQ Chatbot with Controllable Question Generator? [5.680871239968297]
本稿では, セマンティックグラフを用いて, 高い品質, 多様性, 制御可能なサンプルを生成する手法を提案する。
流動的でセマンティックに生成されたQAペアは、我々の通過検索モデルをうまく騙すことができる。
生成されたデータセットは、新しいターゲット領域へのQAモデルの一般化性を向上させる。
論文 参考訳(メタデータ) (2021-11-18T12:54:07Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
質問生成 (QG) とは, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、
我々は、自由なニュース要約データを使用し、宣言文を依存性解析、名前付きエンティティ認識、セマンティックロールラベリングを用いて適切な質問に変換する。
得られた質問は、元のニュース記事と組み合わせて、エンドツーエンドのニューラルQGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-09-16T13:08:43Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
非構造化テキストを文脈として与えられたQAペアを生成するための条件付き変分オートエンコーダ(HCVAE)を提案する。
我々のモデルは、トレーニングにわずかなデータしか使わず、両方のタスクの全てのベースラインに対して印象的なパフォーマンス向上が得られる。
論文 参考訳(メタデータ) (2020-05-28T08:26:06Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
擬似学習データを用いてQAモデルを訓練するための教師なしアプローチを提案する。
関連した検索文に簡単なテンプレートを適用してQA学習のための質問を生成すると、元の文脈文よりも、下流QAのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-04-24T17:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。