論文の概要: Machine Learning (In) Security: A Stream of Problems
- arxiv url: http://arxiv.org/abs/2010.16045v2
- Date: Mon, 4 Sep 2023 17:05:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 12:32:13.492100
- Title: Machine Learning (In) Security: A Stream of Problems
- Title(参考訳): 機械学習(In)セキュリティ: 問題の流れ
- Authors: Fabr\'icio Ceschin and Marcus Botacin and Albert Bifet and Bernhard
Pfahringer and Luiz S. Oliveira and Heitor Murilo Gomes and Andr\'e Gr\'egio
- Abstract要約: 我々は、サイバーセキュリティデータに対する機械学習技術の正しい適用における主な課題を特定し、詳細化し、議論する。
我々は,概念のドリフト,進化,ラベルの遅延,および既存のソリューションに対する敵MLの影響を評価する。
我々は、ある状況下で既存の解決策が失敗する可能性を提示し、それらに対する緩和を提案する。
- 参考スコア(独自算出の注目度): 17.471312325933244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) has been widely applied to cybersecurity and is
considered state-of-the-art for solving many of the open issues in that field.
However, it is very difficult to evaluate how good the produced solutions are,
since the challenges faced in security may not appear in other areas. One of
these challenges is the concept drift, which increases the existing arms race
between attackers and defenders: malicious actors can always create novel
threats to overcome the defense solutions, which may not consider them in some
approaches. Due to this, it is essential to know how to properly build and
evaluate an ML-based security solution. In this paper, we identify, detail, and
discuss the main challenges in the correct application of ML techniques to
cybersecurity data. We evaluate how concept drift, evolution, delayed labels,
and adversarial ML impact the existing solutions. Moreover, we address how
issues related to data collection affect the quality of the results presented
in the security literature, showing that new strategies are needed to improve
current solutions. Finally, we present how existing solutions may fail under
certain circumstances, and propose mitigations to them, presenting a novel
checklist to help the development of future ML solutions for cybersecurity.
- Abstract(参考訳): 機械学習(ML)はサイバーセキュリティに広く適用されており、この分野の多くのオープンな問題を解決する最先端技術と考えられている。
しかし、セキュリティ上の課題が他の領域に現れない可能性があるため、生成したソリューションがどの程度優れているかを評価することは極めて困難である。
悪質なアクターは常に防衛ソリューションを克服するための新しい脅威を創り出すことができ、あるアプローチではそれらを考慮しないかもしれない。
そのため、MLベースのセキュリティソリューションを適切に構築し、評価する方法を知ることが不可欠である。
本稿では,ML技術のサイバーセキュリティデータへの正しい適用における主な課題を識別し,詳細化し,議論する。
我々は,概念のドリフト,進化,ラベルの遅延,および既存のソリューションに対する敵MLの影響を評価する。
さらに,データ収集に関する課題がセキュリティ文献に提示された結果の品質にどのように影響するかを考察し,現在のソリューションを改善するために新たな戦略が必要であることを示す。
最後に、ある状況下で既存のソリューションが失敗する可能性を示し、それらに対する緩和を提案し、将来のサイバーセキュリティのためのMLソリューションの開発を支援するための新しいチェックリストを提示します。
関連論文リスト
- Multimodal Situational Safety [73.63981779844916]
マルチモーダル・シチュエーション・セーフティ(Multimodal situational Safety)と呼ばれる新しい安全課題の評価と分析を行う。
MLLMが言語やアクションを通じても安全に応答するためには、言語クエリが対応する視覚的コンテキスト内での安全性への影響を評価する必要があることが多い。
我々は,現在のMLLMの状況安全性能を評価するためのマルチモーダル状況安全ベンチマーク(MSSBench)を開発した。
論文 参考訳(メタデータ) (2024-10-08T16:16:07Z) - Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
社会的利益にもかかわらず、最近の研究はグラフMLモデルの普及に伴う重要な安全性上の懸念を浮き彫りにしている。
安全性を重視した設計が欠如しているため、これらのモデルは信頼性の低い予測を導き、一般化性の低下を示し、データの機密性を侵害することができる。
金融詐欺検出のような高額なシナリオでは、これらの脆弱性は個人と社会の両方を全般的に危険に晒す可能性がある。
論文 参考訳(メタデータ) (2024-05-17T18:11:11Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
マシン・アンラーニング(MU)は、Safe AIを達成する可能性から、最近かなりの注目を集めている。
この調査は、機械学習における脅威、攻撃、防衛に関する広範な研究のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-03-20T15:40:18Z) - New Challenges in Reinforcement Learning: A Survey of Security and
Privacy [26.706957408693363]
強化学習(Reinforcement Learning, RL)は、AIの最も重要な分野のひとつ。
RLは医療、データ市場、自動運転、ロボット工学など、さまざまな分野で広く採用されている。
これらのアプリケーションやシステムは、セキュリティやプライバシ攻撃に弱いことが示されている。
論文 参考訳(メタデータ) (2022-12-31T12:30:43Z) - Security for Machine Learning-based Software Systems: a survey of
threats, practices and challenges [0.76146285961466]
機械学習ベースのモダンソフトウェアシステム(MLBSS)を安全に開発する方法は、依然として大きな課題である。
潜伏中の脆弱性と、外部のユーザーや攻撃者に暴露されるプライバシー問題は、ほとんど無視され、特定が難しい。
機械学習ベースのソフトウェアシステムのセキュリティは、固有のシステム欠陥や外敵攻撃から生じる可能性があると考えている。
論文 参考訳(メタデータ) (2022-01-12T23:20:25Z) - Unsolved Problems in ML Safety [45.82027272958549]
研究の準備ができている4つの問題、すなわち、ハザードを克服し、ハザードを特定し、MLシステムを操り、MLシステムの扱い方に対するリスクを低減する。
それぞれの問題のモチベーションを明確にし、具体的な研究指針を提供する。
論文 参考訳(メタデータ) (2021-09-28T17:59:36Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Understanding the Usability Challenges of Machine Learning In
High-Stakes Decision Making [67.72855777115772]
機械学習(ML)は、多種多様な成長を続ける一連のドメインに適用されている。
多くの場合、MLやデータサイエンスの専門知識を持たないドメインの専門家は、ML予測を使用してハイステークな意思決定を行うように求められます。
児童福祉スクリーニングにおけるMLユーザビリティの課題について,児童福祉スクリーニング者との一連のコラボレーションを通じて検討する。
論文 参考訳(メタデータ) (2021-03-02T22:50:45Z) - Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [24.60052335548398]
機械学習(ML)技術は、スマートサイバーフィジカルシステム(CPS)とIoT(Internet-of-Things)によって急速に採用されています。
ハードウェアとソフトウェアの両方のレベルで、さまざまなセキュリティと信頼性の脅威に脆弱であり、その正確性を損ないます。
本稿では、現代のMLシステムの顕著な脆弱性を要約し、これらの脆弱性に対する防御と緩和技術の成功を強調する。
論文 参考訳(メタデータ) (2021-01-04T20:06:56Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。