論文の概要: Resource-Aware Pareto-Optimal Automated Machine Learning Platform
- arxiv url: http://arxiv.org/abs/2011.00073v1
- Date: Fri, 30 Oct 2020 19:37:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 16:08:57.619647
- Title: Resource-Aware Pareto-Optimal Automated Machine Learning Platform
- Title(参考訳): リソースアウェアパレート最適自動機械学習プラットフォーム
- Authors: Yao Yang, Andrew Nam, Mohamad M. Nasr-Azadani, Teresa Tung
- Abstract要約: 新プラットフォーム Resource-Aware AutoML (RA-AutoML)
RA-AutoMLは、フレキシブルで一般化されたアルゴリズムで、複数の目的に合わせた機械学習モデルを構築することができる。
- 参考スコア(独自算出の注目度): 1.6746303554275583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we introduce a novel platform Resource-Aware AutoML
(RA-AutoML) which enables flexible and generalized algorithms to build machine
learning models subjected to multiple objectives, as well as resource and
hard-ware constraints. RA-AutoML intelligently conducts Hyper-Parameter
Search(HPS) as well as Neural Architecture Search (NAS) to build models
optimizing predefined objectives. RA-AutoML is a versatile framework that
allows user to prescribe many resource/hardware constraints along with
objectives demanded by the problem at hand or business requirements. At its
core, RA-AutoML relies on our in-house search-engine algorithm,MOBOGA, which
combines a modified constraint-aware Bayesian Optimization and Genetic
Algorithm to construct Pareto optimal candidates. Our experiments on CIFAR-10
dataset shows very good accuracy compared to results obtained by state-of-art
neural network models, while subjected to resource constraints in the form of
model size.
- Abstract(参考訳): 本研究では,複数の目的を考慮した機械学習モデルの構築と,リソースとハードウエアの制約を柔軟かつ一般化したアルゴリズムを実現するための,新しいプラットフォームであるResource-Aware AutoML(RA-AutoML)を提案する。
RA-AutoMLは、ハイパーパラメータサーチ(HPS)とニューラルアーキテクチャサーチ(NAS)をインテリジェントに実行し、事前定義された目的を最適化するモデルを構築する。
ra-automlは、問題やビジネス要件によって要求される目的とともに、多くのリソース/ハードウェア制約を規定できる汎用フレームワークである。
RA-AutoMLのコアとなるのは,制約を意識したベイズ最適化と遺伝的アルゴリズムを組み合わせた社内検索エンジンアルゴリズムMOBOGAである。
CIFAR-10データセットに対する実験は、最先端のニューラルネットワークモデルによる結果と比較して非常に精度が良いが、モデルサイズという形で資源制約を受ける。
関連論文リスト
- Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - AutoXPCR: Automated Multi-Objective Model Selection for Time Series
Forecasting [1.0515439489916734]
本稿では,自動的かつ説明可能な多目的モデル選択のための新しい手法であるAutoXPCRを提案する。
我々の手法はメタラーニングを利用して、(P)予測誤差、(C)ミスプレキシティ、(R)ソース要求を含むPCR基準に沿ったモデルの性能を推定する。
我々の手法は、他のモデル選択手法よりも明らかに優れている。平均すると、最高の品質の90%のモデルに推奨する計算コストの20%しか必要としない。
論文 参考訳(メタデータ) (2023-12-20T14:04:57Z) - AutoML-GPT: Large Language Model for AutoML [5.9145212342776805]
包括的なツールとライブラリを統合するAutoML-GPTというフレームワークを確立しました。
会話インターフェースを通じて、ユーザーは要求、制約、評価メトリクスを指定できる。
我々は、AutoML-GPTが機械学習タスクに必要な時間と労力を大幅に削減することを示した。
論文 参考訳(メタデータ) (2023-09-03T09:39:49Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREAは、トレーニングなしメトリクスの最適化組み合わせを利用してアーキテクチャをランク付けする、独自のセルベースの進化NASアルゴリズムである。
本実験はNAS-Bench-101とNATS-Benchの共通ベンチマークを用いて,フリーレアがモデル自動設計のための高速で効率的かつ効果的な探索手法であることを実証した。
論文 参考訳(メタデータ) (2022-06-17T11:16:28Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
シンプルだが強力なアプローチは、小さなサブセットのデータを操作することだ。
本研究では,コアセット選択を基数制約付き双レベル最適化問題として定式化する汎用コアセットフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-26T09:08:38Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
強化学習(RL)に基づく初の堅牢なAutoMLフレームワークRobostaを提案します。
このフレームワークは,良性サンプルの競争精度を維持しつつ,モデルロバスト性を最大22%向上させることができることを示す。
論文 参考訳(メタデータ) (2021-01-15T03:12:29Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorchは、完全に自動化されたディープラーニング(AutoDL)を実現するフレームワーク
ディープニューラルネットワーク(DNN)のウォームスタートとアンサンブルのためのマルチフィデリティ最適化とポートフォリオ構築を組み合わせる。
Auto-PyTorchは、いくつかの最先端の競合製品よりもパフォーマンスが良いことを示す。
論文 参考訳(メタデータ) (2020-06-24T15:15:17Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。