論文の概要: Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis
- arxiv url: http://arxiv.org/abs/2502.15491v1
- Date: Fri, 21 Feb 2025 14:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:09:14.463995
- Title: Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis
- Title(参考訳): 振動解析を用いたMLに基づくUAV環境モニタリングのためのネットワークリソース最適化
- Authors: Alexandre Gemayel, Dimitrios Michael Manias, Abdallah Shami,
- Abstract要約: 条件監視(CM)は機械学習(ML)モデルを使用して異常および異常な条件を識別する。
本研究では,MLベースのUAV CMフレームワークにおけるネットワークリソースの最適化について検討する。
次元削減技術を活用することで、ネットワークリソース消費の99.9%が削減される。
- 参考スコア(独自算出の注目度): 54.550658461477106
- License:
- Abstract: As smart cities begin to materialize, the role of Unmanned Aerial Vehicles (UAVs) and their reliability becomes increasingly important. One aspect of reliability relates to Condition Monitoring (CM), where Machine Learning (ML) models are leveraged to identify abnormal and adverse conditions. Given the resource-constrained nature of next-generation edge networks, the utilization of precious network resources must be minimized. This work explores the optimization of network resources for ML-based UAV CM frameworks. The developed framework uses experimental data and varies the feature extraction aggregation interval to optimize ML model selection. Additionally, by leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
- Abstract(参考訳): スマートシティが実現し始めると、無人航空機(UAV)の役割と信頼性がますます重要になる。
信頼性の1つの側面は条件監視(CM)であり、機械学習(ML)モデルを利用して異常および悪条件を識別する。
次世代エッジネットワークの資源制約の性質を考えると、貴重なネットワークリソースの利用を最小化する必要がある。
本研究では,MLベースのUAV CMフレームワークにおけるネットワークリソースの最適化について検討する。
開発したフレームワークは実験データを使用し,特徴抽出アグリゲーション間隔を変化させてMLモデル選択を最適化する。
また、次元削減技術を活用することにより、ネットワークリソース消費の99.9%が削減される。
関連論文リスト
- Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
移動エッジコンピューティング(MEC)を援用したセルフリーネットワーク上でのクロスレイヤリソース割り当ては、データレートを促進するために、送信およびコンピューティングリソースを十分に活用することができる。
深層学習の観点からMEC支援セルフリーネットワークのサブキャリア配置とビームフォーミング最適化について検討した。
論文 参考訳(メタデータ) (2024-12-21T10:18:55Z) - Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
フェデレートラーニング(FL)は、エッジデバイスが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
しかし、電力、帯域幅などの制約のあるリソースを持つモバイルエッジネットワーク上にFLをデプロイすることは、高いトレーニングレイテンシと低いモデルの精度に悩まされる。
本稿では,資源制約と不確実性の下で,モバイルエッジネットワーク上でのFLの最適なクライアントスケジューリングとリソース割り当てについて検討する。
論文 参考訳(メタデータ) (2024-09-29T01:56:45Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
本稿では,仮想ネットワークの埋め込みにおいて,入出力制御と資源配分を併用して学習する深層強化学習手法を提案する。
HRL-ACRAは,受入率と長期平均収益の両面で,最先端のベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Flexible Payload Configuration for Satellites using Machine Learning [33.269035910233704]
現在のGEOシステムは、周波数使用率の少ないマルチビームフットプリントを用いて、ビームに電力と帯域幅を均一に分散している。
近年の研究では、不均一な交通シナリオにおけるこのアプローチの限界が明らかにされており、非効率性につながっている。
本稿では、無線リソース管理(RRM)に対する機械学習(ML)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-18T13:45:17Z) - Intelligent Proactive Fault Tolerance at the Edge through Resource Usage
Prediction [0.7046417074932255]
リカレントニューラルネットワーク(RNN)を用いたエッジリソース利用予測を利用した知的能動的フォールトトレランス(IPFT)手法を提案する。
本稿では,処理能力の欠如により許容範囲で品質・オブ・サービス(QoS)を提供するインフラの欠如に関連するプロセスフォールトに着目した。
論文 参考訳(メタデータ) (2023-02-09T00:42:34Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z) - CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing [19.990451009223573]
ネットワークスライシングは,5Gおよび将来のネットワークにおける資源利用のための有望なソリューションとして提案されている。
モデルや隠れ構造を知らずにCMDP(Constrained Markov Decision Process)として問題を定式化する。
本稿では、制約付き強化LeArningに基づくリソース割当アルゴリズムであるCLARAを用いて、この問題を解決することを提案する。
論文 参考訳(メタデータ) (2021-11-16T11:54:09Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。