論文の概要: On minimal variations for unsupervised representation learning
- arxiv url: http://arxiv.org/abs/2211.03782v1
- Date: Mon, 7 Nov 2022 18:57:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 15:07:04.609297
- Title: On minimal variations for unsupervised representation learning
- Title(参考訳): 教師なし表現学習における最小変動について
- Authors: Vivien Cabannes, Alberto Bietti, Randall Balestriero
- Abstract要約: 教師なし表現学習は、様々な下流タスクを解決するために、生データを効率的に記述することを目的としている。
教師なし表現学習の原則として最小限のバリエーションを考案することは、自己教師付き学習アルゴリズムの実践的ガイドラインを改善する道を開く。
- 参考スコア(独自算出の注目度): 19.055611167696238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised representation learning aims at describing raw data efficiently
to solve various downstream tasks. It has been approached with many techniques,
such as manifold learning, diffusion maps, or more recently self-supervised
learning. Those techniques are arguably all based on the underlying assumption
that target functions, associated with future downstream tasks, have low
variations in densely populated regions of the input space. Unveiling minimal
variations as a guiding principle behind unsupervised representation learning
paves the way to better practical guidelines for self-supervised learning
algorithms.
- Abstract(参考訳): 教師なし表現学習は、さまざまな下流タスクを解決するために、生データを効率的に記述することを目的としている。
多様体学習、拡散写像、最近では自己教師付き学習など、多くの手法でアプローチされてきた。
これらの手法はすべて、将来の下流タスクに関連するターゲット関数が、入力空間の密集した領域において低い変動を持つという前提に基づいている。
教師なし表現学習の背後にある原則として最小限のバリエーションを解放することは、自己教師付き学習アルゴリズムの実践的ガイドラインを改善する道を開く。
関連論文リスト
- A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - A Study of Forward-Forward Algorithm for Self-Supervised Learning [65.268245109828]
本研究では,自己指導型表現学習におけるフォワードとバックプロパゲーションのパフォーマンスについて検討する。
我々の主な発見は、フォワードフォワードアルゴリズムが(自己教師付き)トレーニング中にバックプロパゲーションに相容れないように機能するのに対し、転送性能は研究されたすべての設定において著しく遅れていることである。
論文 参考訳(メタデータ) (2023-09-21T10:14:53Z) - Learning Downstream Task by Selectively Capturing Complementary
Knowledge from Multiple Self-supervisedly Learning Pretexts [20.764378638979704]
本稿では,タスクに適した表現を適応的に絞り込むために,アテンション機構を活用する新しい手法を提案する。
本手法は,知識収集において,現在普及しているテキストマッチング手法をはるかに上回っている。
論文 参考訳(メタデータ) (2022-04-11T16:46:50Z) - Can Semantic Labels Assist Self-Supervised Visual Representation
Learning? [194.1681088693248]
近隣環境におけるコントラスト調整(SCAN)という新しいアルゴリズムを提案する。
一連のダウンストリームタスクにおいて、SCANは従来の完全教師付きおよび自己教師付きメソッドよりも優れたパフォーマンスを達成する。
本研究は, セマンティックラベルが自己指導的手法の補助に有用であることを明らかにする。
論文 参考訳(メタデータ) (2020-11-17T13:25:00Z) - A Survey on Contrastive Self-supervised Learning [0.0]
自己教師付き学習は、大規模なデータセットのアノテートコストを回避する能力によって人気を集めている。
コントラスト学習は近年,コンピュータビジョン,自然言語処理(NLP)などの分野において,自己指導型学習手法の主流となっている。
本稿では, コントラスト的アプローチに従う自己教師型手法について, 広範囲にわたるレビューを行う。
論文 参考訳(メタデータ) (2020-10-31T21:05:04Z) - Self-Supervised Prototypical Transfer Learning for Few-Shot
Classification [11.96734018295146]
自己教師ありトランスファー学習アプローチ ProtoTransferは、数ショットタスクにおいて、最先端の教師なしメタラーニング手法より優れている。
ドメインシフトを用いた数ショットの実験では、我々のアプローチは教師付きメソッドに匹敵する性能を持つが、ラベルの桁数は桁違いである。
論文 参考訳(メタデータ) (2020-06-19T19:00:11Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z) - Evolving Losses for Unsupervised Video Representation Learning [91.2683362199263]
大規模未ラベル映像データから映像表現を学習する新しい手法を提案する。
提案した教師なし表現学習では,単一のRGBネットワークが実現し,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-02-26T16:56:07Z) - Hierarchical Variational Imitation Learning of Control Programs [131.7671843857375]
パラメータ化された階層的手順(PHP)で表される制御ポリシーの模倣学習のための変分推論手法を提案する。
本手法は, 教師による実演の観察・行動トレースのデータセットにおける階層構造を, 手続き呼び出しや用語の待ち行列に近似した後続分布を学習することによって発見する。
階層的模倣学習(hierarchical mimicion learning)の文脈における変分推論の新たな利点を実証する。
論文 参考訳(メタデータ) (2019-12-29T08:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。